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ABSTRACT 

Overwintering is a critical life-history stage for species inhabiting temperate environments 

characterized by harsh, cold winters lasting up to half the year or longer. Ectotherms, such as 

herpetofauna, display behavioural adaptations in order to survive winters. During this period 

of their life history, those animals occupying fluctuating environments, such as reservoirs, 

may face additional challenges. I studied the overwinter ecology of a population of Western 

Painted Turtles (Chrysemys picta bellii) in a hydroelectric reservoir in British Columbia, 

Canada. My study built upon a preliminary study on the general ecology and population 

demographics of this population. This preliminary study identified variation in overwintering 

tactics between two water bodies within the reservoir – congregated and dispersive 

hibernation. The specific goals of my research were to (1) document more closely the 

variation in overwintering tactics occurring across the different subpopulations, (2) determine 

if the turtles in the subpopulations were experiencing and/or selecting different conditions 

during hibernation, and (3) determine if changes in reservoir levels during winter elicited 

response(s) in the turtles, and if so, examine how this relationship contributed to the use of 

different tactics. I focused on two locations within the reservoir that supported the 

overwhelming majority of turtles, and also included a small, isolated pond not influenced by 

the reservoir. By using radio telemetry to track turtles over two winters, my research 

identified variation in the overwintering tactics used between water bodies and years, and 

determined that overwintering tactics did not vary with water depth, temperature or dissolved 

oxygen. Turtles in all locations buried in the reservoir substrate for winter. Turtles displayed 

longer movements in winter than those documented in similar studies; however, these 

movements could not be correlated to changes in water levels. Body condition was 

comparable between the reservoir and reference water bodies yet population density and 

turtle size were notably higher in the non-reservoir location. In conclusion, this population of 

turtles exhibited behavioural plasticity in their overwintering tactics, and did not appear to be 

impacted by water level fluctuations in winter.  

Keywords: Western Painted Turtle, Chrysemys picta bellii, overwintering, behavioural 

plasticity, hibernation, northern, fluctuating, reservoir   



iii 

 

 

TABLE OF CONTENTS 

DEDICATION ......................................................................................................................... vi 

LIST OF FIGURES ................................................................................................................ vii 

Chapter One ...............................................................................................................................1 

Introduction to the Thesis ..........................................................................................................1 

Animal Behaviour in Response to Environmental Change .................................................. 1 

Overwintering in Reptiles ..................................................................................................... 4 

Hibernation in Adult Canadian Freshwater Turtles .......................................................... 6 

The Painted Turtle (Chrysemys picta) – Ecology and Conservation .................................... 9 

Painted Turtle Adaptations for Overwintering ............................................................... 12 

Reservoir Environments...................................................................................................... 14 

Thesis Objectives ................................................................................................................ 15 

Study Area and Previous Research ..................................................................................... 16 

Additional Details on Water Bodies in Study ................................................................. 21 

Literature Cited ................................................................................................................... 25 

Chapter Two.............................................................................................................................32 

Overwintering Ecology of a Northern Population of Western Painted Turtles (Chrysemys 

picta bellii) in a Canadian Reservoir .......................................................................................32 

Introduction ......................................................................................................................... 32 

Methods............................................................................................................................... 34 

Study Area ...................................................................................................................... 34 

Trapping and Equipment................................................................................................. 36 

Spatial Arrangement of Overwintering Turtles .............................................................. 38 

Conditions at Overwinter Sites ....................................................................................... 38 

Conditions at Reference Sites ......................................................................................... 39 

Data Analysis .................................................................................................................. 42 

Results ................................................................................................................................. 42 

Did turtles in different locations show different overwintering tactics?......................... 43 

Did habitat conditions vary between locations? ............................................................. 47 

Habitat comparison between turtle and reference locations ........................................... 50 

Do changes in reservoir levels elicit movements in overwintering turtles? ................... 54 



iv 

 

 

Discussion ........................................................................................................................... 56 

Why are turtles showing variation in their overwintering tactics? ................................. 56 

Turtle Behaviour and Habitat Availability ..................................................................... 57 

Do reservoir operations impact overwintering turtles? ................................................... 58 

Conclusions ......................................................................................................................... 60 

Literature Cited ................................................................................................................... 61 

Chapter Three...........................................................................................................................66 

Turtle Populations in Neighbouring Water Bodies: Comparing Anthropogenic vs. Natural 

Habitats ....................................................................................................................................66 

Introduction ......................................................................................................................... 66 

Methods............................................................................................................................... 68 

Study Area ...................................................................................................................... 68 

Turtle Capture and Morphology ..................................................................................... 69 

Data Analysis .................................................................................................................. 70 

Results ................................................................................................................................. 71 

Captures and Population Estimates ................................................................................. 71 

Body Size and Condition between Locations ................................................................. 71 

Discussion and Conclusions ....................................................................................................74 

Literature Cited ................................................................................................................... 77 

Chapter Four ............................................................................................................................82 

Management Implications and Future Research ......................................................................82 

Conclusion .......................................................................................................................... 84 

Literature Cited ................................................................................................................... 86 

Appendix A ..............................................................................................................................88 

 

   



v 

 

 

ACKNOWLEDGEMENTS 

First and foremost, I’d like to thank my advisor, Dr. Karl Larsen, for his support, guidance, 

advice and for always making time for a beer with his grad students. Special thanks to Virgil 

Hawkes from LGL Limited, for partnering with me on this project and providing support, 

both advisory and financial. The Okanagan Nation Alliance also was a terrific organization to 

work with on this project, especially Dixon Terbasket, Natasha Audy and Al Peatt. Thanks as 

well to Doug Adama from LGL for his field time and expertise and to Janean Sharkey from 

LGL for volunteering on her day off. Thank you to my committee members, Dr. Brian Heise, 

Dr. Leigh Anne Isaac from VAST Resource Solutions, as well as Virgil Hawkes, I very much 

appreciate your time and encouragement. 

Thank you for the great support from the faculty at Thompson Rivers University, including 

Jacqueline Sorenson, Shane Rollans, Lauchlan Fraser and Louis Gosselin. Thanks to field 

assistants Amber Merko and Eric Spilker and volunteer Mandy Ross for helping with 

turtling. Thanks to my fellow lab mates for the laughs, support and help when I needed it: Jo 

Anne Hales, Cheryl Blair, Sasindu Gunawardana, and Malcolm McAdie. I would also like to 

acknowledge the residents of Revelstoke who helped and supported this research: James Van 

Dam, Harvey Tarzwell and Steve Vandermeer. Innumerable thanks to my parents, John & 

Diane Leeming, for welcoming their daughter into their home once again to complete further 

studies.  

Thanks to BC Hydro for making this project possible (Water Use Plan Project CLBMON-

11B3). This research could not have been completed without their support and that of the 

Natural Sciences and Engineering Research Council of Canada. This work was completed in 

accordance with Thompson Rivers University Animal Care Committee Permit # 100451 and 

BC Ministry of Forests, Lands and Natural Resource Operations Wildlife Act Permit CB10-

60676.  

  



vi 

 

 

DEDICATION 

 

This thesis is dedicated to my husband, Devon Duncan. This work would not be made 

possible without his unconditional love and support.  

 

 

 

  



vii 

 

 

LIST OF FIGURES 

Figure 1-1: Flow chart showing the relationship between the terms tactic, plasticity, 

canalization, strategy and adaptation. ................................................................................. 3 

Figure 1-2: Range map for Painted Turtles. Blue indicates Western Painted Turtle (C.p. 

bellii) range, orange indicates ranges of Midland Painted Turtle (C.p. marginata), red 

indicates range of Eastern Painted Turtle (C.p. picta) and green indicates range of 

Southern Painted Turtle (C.p. dorsalis). The yellow star indicates the approximate 

location of the study population. Map adapted from Wikipedia (2016). .......................... 10 

Figure 1-3: Morphology of the Western Painted Turtle (Chrysemys picta bellii) showing (a.) 

carapace and (b.) plastron (photos by author). .................................................................. 11 

Figure 1-4: Mean monthly temperature (°C) and precipitation (mm) for Revelstoke, BC for 

study periods Jan - Dec 2013 and Jan - May 2014 compared to the 30-year mean (1971-

2000, Environment Canada 2014). Standard deviation error bars available for 30-year 

mean temperatures only. ................................................................................................... 18 

Figure 1-5: Annual reservoir elevations (MASL) in both study years compared against the 

10-year mean (±SD) (BC Hydro data retrieved from LGL Ltd.). .................................... 19 

Figure 1-6: Revelstoke Reach showing study locations Airport Marsh, Montana Slough, 

Williamson Lake and Turtle Pond, also showing non-overwintering location Cartier Bay, 

Revelstoke Reach, BC, Canada. ....................................................................................... 20 

Figure 1-7: Airport Marsh, February 2014. Photo by author. ................................................. 22 

Figure 1-8: Airport Marsh, May 2014. Photo by author. ........................................................ 22 

Figure 1-9: Montana Slough, February 2014. Photo by K. Larsen. ........................................ 23 

Figure 1-10: Montana Slough, June 2013. Photo by author. .................................................. 23 

Figure 1-11: Turtle Pond, February 2013. Photo by N. Audy. ............................................... 24 

Figure 1-12: Turtle Pond, May 2014. Photo by author. .......................................................... 24 

Figure 2-1: a. Radio transmitter (gold) and depth recorder (white) attachment and placement 

on posterior of Western Painted Turtle (C.p. bellii) carapace. Wires on the depth recorder 

were trimmed similar to those on the radio transmitter prior to marine epoxy placement b. 

Radio transmitter and depth recorder attachment on posterior of Western Painted Turtle 

(C.p. bellii) with marine epoxy. Photos by author. ........................................................... 37 



viii 

 

 

Figure 2-2: Location of automated data-recording stations in Airport Marsh and Turtle Pond 

in both study winters. ........................................................................................................ 40 

Figure 2-3: Location of automated data-recording stations in Montana Slough in both years.

........................................................................................................................................... 41 

Figure 2-4: Overwintering turtle locations in February of both 2013 (yellow) and 2014 (red) 

at Airport Marsh and Turtle Pond, Revelstoke Reach, Arrow Lakes Reservoir. .............. 45 

Figure 2-5: Overwinter turtle locations in February of both 2013 (yellow) and 2014 (red) at 

Montana Slough, Revelstoke Reach, Arrow Lakes Reservoir. ......................................... 46 

Figure 2-6: Mean weekly depth (±SD) of three turtles carrying depth recorders (n = 2 Airport 

Marsh and n = 1 Montana Slough) from October 2013 to April 2014. ............................ 48 

Figure 2-7: Partially buried Western Painted Turtle beneath ice at Turtle Pond viewed 

through hole drilled with ice auger, Dec 15 2013. Photo by author. ................................ 48 

Figure 2-8: Mean water depths (cm) (+SD) at turtle locations in Airport Marsh and Montana 

Slough in the first study winter (2013). ............................................................................ 49 

Figure 2-9: Mean ice depths (cm) (+SD) at turtle locations in all water bodies in the second 

winter (2013-14) (AP = Airport Marsh, MS = Montana Slough, TP = Turtle Pond). ...... 49 

Figure 2-10: Mean monthly logger, turtle carapace and turtle location temperature at 

Montana Slough, January – March 2013. All means show ±SD. ..................................... 51 

Figure 2-11: Turtle carapace temperatures (°C) over both study winters at all locations (AP = 

Airport Marsh, MS = Montana Slough, TP = Turtle Pond). All means show ±SD. ......... 51 

Figure 2-12: Mean water body temperature (±SD) profiles showing high, mid, substrate, 

surface-water interface and shoreline temperatures in comparison to mean turtle carapace 

temperature for all water bodies from Nov 2013 to Apr 2014. ........................................ 52 

Figure 2-13: Mean distance moved by turtles (+SD) among winter months at each location 

shown for both years (AP = Airport Marsh n = 17, MS = Montana Slough n = 13, TP = 

Turtle Pond n = 10). .......................................................................................................... 55 

Figure 3-1: The relationship between carapace length (cm) and weight (g) for Western 

Painted Turtles captured in 2011 (Apr-Sept), 2013 (May, Aug-Oct) and 2014 (May) in all 

three study sites (AP = Airport Marsh, MS = Montana Slough, TP = Turtle Pond) at 

Revelstoke BC, Canada. ................................................................................................... 72 



ix 

 

 

Figure 3-2: Comparison of mean body condition scores (residuals from the regression of 

weight (g) on carapace length (cm)) ± SE of male Western Painted Turtles captured in 

each study location in 2011, 2013 and 2014 (Apr-June). (AP N = 14; MS N = 13; TP N = 

16). .................................................................................................................................... 73 

Figure A-1: Overwintering turtle locations at Airport Marsh south in December 2013/January 

2014 and March 2014. ...................................................................................................... 89 

Figure A-2: Overwintering turtle locations at Montana Slough in December 2013 and March 

2014................................................................................................................................... 90 

Figure A-3: Overwintering turtle locations at Turtle Pond in December 2013 and March 

2014................................................................................................................................... 91 



x 

 

 

LIST OF TABLES 

Table 1: Mean monthly air temperature (°C) and ice depth (cm) (measured from Dec – Mar) 

for the Revelstoke Reach portion of the Arrow Lakes Reservoir during the two winters of 

study. ................................................................................................................................. 44 

Table 2: Summary of AIC and ΔAICc values for the top five candidate models assessing the 

influence of water temperature (°C), dissolved oxygen (mg/L), ice depth and water depth 

(cm) at the 2 and 5-m scales on turtle presence at Airport Marsh in the second study 

winter (2013-14). Repeated measures were accounted for by including the turtle identifier 

as a blocking variable within months (i.e., Month|Turtle). ............................................... 53 

 

  



1 

 

Chapter One 

INTRODUCTION TO THE THESIS 

ANIMAL BEHAVIOUR IN RESPONSE TO ENVIRONMENTAL CHANGE 

The study of animal ecology has long focused on the identification and evolutionary 

significance of various characteristics of species. In 1859, Charles Darwin put forth his 

hypothesis that variations within generations can become heritable if they contribute to the 

success of individuals (Darwin 1859). Variations can be seen both structurally and 

behaviourally and are considered adaptive in nature when a product of natural selection.  The 

goal of studying variations in nature is to gain a better understanding of a species’ ability or 

inability to respond to a given variable or condition, and to evaluate the efficiency of the 

response to the success of that species. Observations of variation over time can provide 

insight into a species’ life history, which can enable ecologists to evaluate species and 

population health, identify impacts or challenges imposed upon an animal, and make 

decisions regarding species management and conservation. Recognition and exploration of 

such variations can be successful only with a clear understanding of the foundations of 

evolution, including common terminology.  

Various terms have been used to refer to the evolution of animal behaviours; however some 

of these terms have come to be used almost synonymously in animal ecology, namely 

adaptation and plasticity, stability and canalization, strategy and tactic. As mentioned above, 

Darwin introduced the term adaptation, defined as “a modified part of an organism which 

performs a biological function for the organism and thus contributes to the organisms’ state 

of adaptation” (Rose and Lauder 1996). An adaptation is relevant to more than just 

behaviour, and in terms of evolution, it involves a change in genotype (Ghalambor et al. 

2007). Plasticity is a term easily confused with adaptation: it is “the ability of an organism to 

express different phenotypes depending on the biotic or abiotic environment (Agrawal 2001). 

The difference between plasticity and adaptation may be observed across environments: 

plasticity may appear through changes in phenotype across a variety of environments, 

whereas an adaptation is an evolutionary, genetic response to a change in environment. For 

example, species of arboreal snakes show differences in clutch size and in lateral ovary 

position compared to non-arboreal species (Pizzatto et al. 2007). Such differences can be 
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considered an adaptation in response to environmental conditions because arboreal snakes 

tend to be more laterally compressed to enhance climbing ability and camouflaging in 

trees(Pizzatto et al. 2007). If, for example, these arboreal snakes exhibited an annual 

migration to a non-arboreal environment and their clutch size and morphology of the ovaries 

changed respective to the environmental change, these traits would then be considered plastic 

and not an adaptation. However, plasticity can become an adaptation, termed ‘adaptive 

plasticity’, when it “places populations close enough to a new phenotypic optimum for 

directional selection to act; plasticity that predictably enhances fitness and is most likely to 

facilitate adaptive evolution on ecological time-scales in new environments” (Ghalambor et 

al. 2007).  

In contrast to the ideas of adaptation and plasticity are the terms ‘canalization’ and 

‘developmental stability’. The term canalization was coined by C.H. Waddington (1942) and 

environmental canalization is defined as “(the ability of) a genotype’s phenotype to remain 

relatively invariant … when exposed to different environments” (Flatt 2005). Tantamount to 

the idea of canalization is developmental stability, which is known as the ability of an 

organism to successfully buffer itself against given environmental or genetic disturbances, or 

genotype-environment interactions (Markow 1995). ‘Plasticity’ is commonly understood to 

be the antithesis term to developmental stability (Bradshaw 1965).  

A strategy is defined as “a set of (behavioural, morphological, physiological) traits that 

optimize (the) success of an individual under given local conditions” (Nakadera and Koene 

2013). 
 
Methods of foraging and reproduction are commonly recognized strategies within the 

ecological literature. The term strategy is commonly confused with tactic, which is “a trait or 

set of traits serving a particular function” (Oliveira and Taborsky 2008). A tactic can be 

behavioural, morphological or physiological traits that aid in creating different phenotypes 

within a species (Oliveira and Taborsky 2008). Essentially, a strategy is an evolved response 

to a given variable with a desired end result, and a tactic is an action used to conduct a 

strategy (Figure 1-1). For example, one study showed intraspecific differences in the mating 

strategies of melanistic and non-melanistic male Pond Sliders (Trachemys scripta); larger 

melanistic males utilized tactics such as biting and chasing to acquire females, whereas   
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Figure 1-1: Flow chart showing the relationship between the terms tactic, plasticity, 

canalization, strategy and adaptation. 
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smaller non-melanistic males displayed titillation tactics (Thomas 2002). Thus, the end goal 

of the strategy is successful mating, and the tactics are the methods used to accomplish the 

goal.  

Behavioural changes may be apparent across a range of species or populations in response to 

changing environmental pressures, both natural and anthropogenic (Foster and Endler 1999). 

Such changes challenge animal ecologists to understand whether animals can respond 

successfully to changes in their environment, through adaptation and/or plasticity, and 

whether tactics and strategies seen within a population are in fact allowing the animals to 

deal with perturbations or shifts in their environment.  A good starting point is to document 

plasticity and whether it appears tenable to animals to cope with environmental changes; 

these situations can be seen among peripheral populations, where individuals occur at the 

limit of the species’ range. These individuals tend to experience extreme conditions in 

comparison to conspecifics elsewhere and such situations offer a unique opportunity to 

investigate the causes for and results of shifts in behaviour.  

OVERWINTERING IN REPTILES  

Temperature is the main factor limiting the northern distribution of herpetofauna and 

influences many aspects of life, including hibernation and winter survival (review by Ultsch 

1989, St. Clair and Gregory 1990). Availability of quality hibernacula is also thought to limit 

the northern extent of herpetofauna (Aleksiuk 1976, Prior and Weatherhead 1996, Greaves 

and Litzgus 2007, Paterson et al. 2012). Northern snakes, for example, are particular about 

site selection for hibernacula, and have preferences for site orientation, thermal properties, 

underground structure and microclimatic conditions (Prior and Weatherhead 1996, Gienger 

and Beck 2011). Freshwater turtles in northern environments are challenged by the duration 

and severity of winter;, adult turtles can survive hibernation for varying lengths of time (2-5 

months, depending on species) (Reese et al. 2004, Ultsch et al. 1999, Newton and Herman 

2009, Edge et al. 2009) and hatchling Painted Turtles can withstand limited bouts of freezing 

temperatures (St. Clair and Gregory 1990, Baker et al. 2003, Costanzo et al. 2008). Thus, 

herpetofauna in the north have adapted to prolonged periods of cold weather with a variety of 

behavioural and physiological adaptations (Aleksiuk 1976, Ultsch and Jackson 1982, review 
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by Ultsch 1989, review by Jackson 2002, Reese et al. 2004, Costanzo et al. 2008, among 

others).  

Hibernation (or overwintering) is a strategy used by herptiles to avoid unsuitable conditions 

(Storey and Storey 1990). Hibernation involves a reduction in metabolic activity, allowing 

the animal to be dormant for an extended period of time which maximizes survival time for 

optimal conditions. Some attribute this dormancy as a predator avoidance strategy during a 

sensitive period of the life cycle (Ultsch et al. 1985, Ultsch 2006). Animals in northern 

environments can experience longer hibernation periods because of the extended winter 

conditions at this latitude (Ultsch et al. 1985, Gienger and Beck 2011). Compared to 

endotherms, which are able to produce their own internal heat, ectotherms are restricted 

geographically by the limitations of their thermal physiology (St. Clair and Gregory 1990, 

Rosen 1991, Buckley et al. 2012) or their ability to tolerate freezing or anoxia in habitats that 

are iced over (review by Ultsch 1989).  

Herpetofauna also possess a range of physiological adaptations that allow them to survive 

prolonged exposure to near- or below-freezing temperatures. Hibernation involves a 5-20 

fold reduction in metabolism that reduces energy requirements and slows energy usage 

(Aleksiuk 1976, review by Storey 1996). Some herpetofauna, including species of hatchling 

turtles (Storey et al. 1988, Dinkelacker et al. 2005), adult turtles (Storey et al. 1993), frogs 

(Storey and Storey 1987, Layne and Kefauver 1997, Croes and Thomas 2000), toads 

(Swanson and Graves 1995), lizards (Halpern 1979) and snakes (Costanzo et al. 1988, 

Churchill and Storey 1992, Costanzo and Lee 1995), can supercool their body and thereby 

tolerate internal body temperatures below freezing for a limited amount of time. To do this, 

species utilize glucose and glycogen in their blood to synthesize cryprotectants that protect 

their cells and organs from damage from freezing (Croes and Thomas 2000). Other species 

also can withstand certain levels of internal freezing, termed freeze tolerance, where a 

portion of their body can freeze and recover upon thawing (Storey et al. 1988). Freeze-

responsive genes aid reptiles in tolerating freezing in this state (review by Storey 2006). 

Finally, there are species that are able to employ both supercooling and freeze tolerance 

strategies, if required (review by Storey 2006). Those species that range across latitudes also 
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may show physiological variation in hibernation between subspecies (Ultsch et al. 1985, 

Reese et al. 2004). 

A key behavioural tactic to successful overwintering for northern herpetofauna is the 

selection of suitable hibernacula (review by Ultsch 1989, Rosen 1991, Taylor and Nol 1989, 

Swanson and Burdick 2010, among others). Herpetofauna can hibernate either terrestrially or 

aquatically, depending on the ecology and physiology of the species.  Terrestrial hibernation 

involves either avoiding or tolerating a certain amount of body tissue freezing by selecting 

thermally buffered hibernation sites (Ultsch 1989, review by Storey 2006). For example, 

snake hibernacula are commonly found on rocky, south-facing slopes that maintain a warm 

ambient temperature through winter (Prior and Weatherhead 1996, Gienger and Beck 2011). 

Toads are known to burrow below the frost line to avoid freezing temperatures, and have 

been recorded as deep as 80 cm subsurface (in Swanson and Graves 1995). Aquatic 

hibernacula most often eliminate the chance of freezing, however a limiting factor is oxygen 

availability (review by Ultsch 1989), though some species can continue to utilize oxygen 

from the water column though winter (Greaves and Litzgus 2007).  

Congregated hibernacula have been identified for a wide range of herpetofauna (Carpenter 

1957, Brown and Parker 1976, review by Ultsch 1989, Meeks and Ultsch 1990, Lamoureux 

and Madison 1999, Litzgus et al. 1999, Newton and Herman 2009, Gienger and Beck 2011, 

among others), yet the reasons for this behaviour are not clear. Since herpetofauna are 

ectotherms, congregated hibernation will not provide body-heat benefits as endothermic 

hibernation does (see Czenze et al. 2013, for example). Research suggests congregated 

denning in ectotherms may be a response to limited or optimal denning site  or a method of 

optimizing mating opportunities come spring (review by Ultsch 1989, Rollinson et al. 2008, 

Chen et al. 2012). Thus, congregated denning may be intentional in that the aggregations are 

brought about by selection for other traits more directly linked to fitness (i.e., fidelity to 

hibernacula, enhanced reproductive success etc.) (Gienger and Beck 2011).  

Hibernation in Adult Canadian Freshwater Turtles 

All adult freshwater turtles found in Canada hibernate aquatically, and can spend up to six 

months beneath the ice in an arrested state (review by Ultsch 1989). The Painted Turtle 

(Chrysemys picta), Map Turtle (Graptemys geographica), Blanding’s Turtle (Emydoidea 
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blandingii), Spotted Turtle (Clemmys guttata) and Wood Turtle (Glyptemys insculpta) are the 

freshwater turtle species found in Canada. Aquatically hibernating turtles can be separated 

into two groups: those that can withstand anoxia (anoxia-tolerant) and those who cannot 

(anoxia-intolerant). Anoxia tolerance is a factor limiting the northern range of freshwater 

turtles, as those species that can tolerate anoxia can be found relatively farther north (Reese 

et al. 2002). In these species, temperature is the main cue for submergence and emergence 

from hibernation for both adults and hatchling turtles (review by Ultsch 1989, Crawford 

1991, Litzgus et al. 1999). Adults that overwinter aquatically utilize a variety of behavioural 

and physiological adaptations to withstand near freezing temperatures and anoxia.  

Aquatic Hibernation 

In addition to responding to near- or below-freezing temperatures, freshwater turtles that 

hibernate aquatically also must deal with reduced or depleted oxygen levels. Some turtles 

hibernate aquatically but remain within the water column and continue to utilize dissolved 

oxygen in the water as required; these turtles are known as ‘anoxia intolerant’. Although 

these animals do not have direct access to air, they are still able to utilize oxygen from water 

and complete aerobic glycolysis to maintain metabolism and function (Crocker et al. 2000). 

Other turtles bury into the mud or bottom substrate and settle themselves into an environment 

void of oxygen; being referred to as ‘anoxia tolerant’ species (Belkin 1963, review by Ultsch 

1989). These turtles have different physiological adaptations that allow them to withstand the 

absence of oxygen to body tissues (hypoxia). These adaptations allow turtles to overwinter 

underwater and avoid harsh conditions and terrestrial predators.   

Turtles that overwinter in oxygenated waters (normoxic) are able to conduct oxygen 

exchange via aerobic metabolism in the cells (Graham and Forsberg 1991, Crocker et al. 

2000, Maginniss et al. 2004). Under these conditions, the primary avenue for oxygen uptake 

is through the integument, and also to a lesser extent through the cloaca and the 

buccopharyngeal cavity (Jackson et al. 2004). Reese et al. (2001) credited metabolic 

depression with allowing Map Turtles (Graptemys geographica) to stay submerged in 

normoxic water for five months while showing no signs of lactate accumulation or a decrease 

in blood pH. Additionally, an increase in blood hemoglobin concentrations in Map Turtles 

submerged in normoxic water correlated with an increase in the blood oxygen (O2) carrying 
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capacity (Maginniss et al. 2004). In this species, extrapulmonary oxygen uptake is sufficient  

to supply resting metabolic rates and elimination of carbon dioxide (CO2) over winter (Reese 

et al. 2001). Wood Turtles also have been observed surfacing during winter, and it is thought 

that extrapulmonary gas exchange supplemented with aerial uptake further aids the animal in 

avoiding anaerobiosis (Graham and Forsberg 1991).   

Anoxia-tolerant turtles rely on anaerobic glycolysis for energy while overwintering in anoxic 

(non-oxygenated) environments, that results in an accumulation of acid metabolites within 

the body and a depletion of stored substrates (Jackson 2000, Jackson 2002, Reese et al. 

2002). In order to survive the resulting effects, turtles depress their metabolism to a 

substantially reduced rate that delays resource depletion and slows acid build-up in the blood. 

Cellular responses to this metabolic depression show a coordinated down-regulation in ATP 

production and utilization rates that is thought to be made possible by a mechanism known as 

channel arrest. Channel arrest slows the passive flux of ions through membrane channels, yet 

still allows required ions to reach the brain (review by Jackson 2002). A large amount of 

glycogen or glucose is required to supply energy during anoxia that turtles store within their 

liver and muscle prior to hibernation (Jackson 2002).  

Lactic acid is a byproduct of ATP hydrolysis, and after prolonged submergence in an anoxic 

environment, turtles can show very high lactate levels in their blood (Jackson 2000, Reese et 

al. 2002). The resulting amount exceeds the normal buffering ability of the body, and 

methods of supplemental buffering are required. Painted Turtles have very high 

concentrations of bicarbonate ions (HCO3-) in extracellular fluids that are the initial buffer in 

response to acid accumulation. In addition, anoxia-tolerant freshwater turtles have the ability 

to mobilize calcium (Ca
2+

), potassium (K
+
) and magnesium (Mg

2+
) ions from their shell and 

skeleton to buffer plasma lactate accumulation; the elevated calcium levels have also shown 

a small effect in protecting the heart muscle from severe acidosis (Jackson et al. 2000, review 

by Jackson 2002, Reese et al. 2002, Reese et al. 2004). The species best known for 

withstanding anoxia is the Western Painted Turtle (Chrysemys picta belli). This species is 

able to withstand hypoxia for up to 5 months at 3°C in controlled lab conditions, the longest 

duration of all northern freshwater turtles (Ultsch and Jackson 1982).  
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THE PAINTED TURTLE (CHRYSEMYS PICTA) – ECOLOGY AND CONSERVATION 

Three of the four subspecies of Chrysemys are found within Canada: the Eastern Painted 

Turtle (C. p. picta), the Midland Painted Turtle (C. p. marginata), and the Western Painted 

Turtle (C. p. bellii) (Figure 1-2). The Southern Painted Turtle (C. p. dorsalis) is found only 

within the United States. The Chrysemys species is the only Northern American turtle whose 

range spans across the continent (Ernst and Barbour 1989, Ernst et al. 1994). Painted Turtles 

are easily identified by their olive carapace, the orange-red coloring on their plastron and the 

yellow lines along their head and tail (COSEWIC 2006) (Figure 1-3). This species exhibits 

sexual dimorphism where the female is larger in size than the male (COSEWIC 2006).  

Painted Turtles prefer shallow, slow-moving aquatic habitats with soft bottoms including 

ponds, marshes, sloughs, lakes, oxbows and streams (Ernst et al. 1994, COSEWIC 2006). 

Terrestrial habitat is also essential for female Painted Turtles that may travel up to 100 m 

inland to find suitable nesting sites (Baldwin et al. 2004). Painted Turtles rely on submerged 

logs, rocks, mud banks, and shoreline for basking (COSEWIC 2006, Schiller and Larsen 

2012).  

Painted Turtles court in spring and fall, and it is thought that effective mating occurs in fall 

(Gibbons 1968). Nesting takes place from May into early July (Mahmoud 1968). Females are 

considered sexually mature in northern climates between 12 to 15 years of age, whereas 

males are considered mature between eight to ten years (COSEWIC 2006). Female Painted 

Turtles have the ability to store sperm for up to three years, and are also reported to be 

promiscuous, resulting in mixed-paternity clutches in the same and between years (Pearce 

and Avise 2001). Females can lie between 4 – 20 eggs per clutch, averaging 12 (Ernst and 

Barbour 1989, Ernst et al. 1994). Turtle growth can vary by year, as growth rates are 

dependent upon air and water temperature, amount of rainfall, and food availability (Ernst et 

al. 1994). In the north, Painted Turtles can hibernate up to seven months, which results in a 

very short growing season (approx. 90 days) (Ernst et al. 1994).  
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Figure 1-2: Range map for Painted Turtles. Blue indicates Western Painted Turtle (C.p. bellii) range, orange indicates ranges of 

Midland Painted Turtle (C.p. marginata), red indicates range of Eastern Painted Turtle (C.p. picta) and green indicates range of 

Southern Painted Turtle (C.p. dorsalis). The yellow star indicates the approximate location of the study population. Map adapted from 

Wikipedia (2016).  
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a.  b.  

Figure 1-3: Morphology of the Western Painted Turtle (Chrysemys picta bellii) showing (a.) carapace and (b.) plastron (photos by 

author). 
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Painted Turtles are diurnal, meaning they are active in the day and rest at the bottom of a 

water body at night (Ernst et al. 1994). In the morning, Painted Turtles will bask to raise their 

body temperature before foraging. Painted Turtles tend to forage at temperatures between 15-

30°C, otherwise they spend their time basking or in estivation (Ernst 1972, Ernst et al. 1994). 

They are considered omnivorous generalists and most commonly feed on algae, fish, frogs 

and invertebrates. Juveniles are more carnivorous than adults, as Painted Turtles tend to 

become more herbivorous as they age (Ernst et al. 1994).  

A number of threats oppose the Painted Turtle including wetland loss and degradation due to 

anthropogenic influence, resulting in water pollution, riparian vegetation loss, bank erosion, 

and habitat fragmentation (COSEWIC 2006). Road traffic also poses a threat to Painted 

Turtles, especially nesting females (Schiller and Larsen 2012; COSEWIC 2006). Painted 

Turtles of all ages can be predated by a number of species, including, but not limited to: 

otters, raccoons, badgers, coyote, bears, herons, skunks, crows, ravens and raptors (Ernst et 

al. 1994, COSEWIC 2006, Duncan pers. obs.) Painted Turtles are especially sensitive to 

drought which can reduce population sizes through mortality and emigration (Lindeman and 

Rabe 1990). Winterkill can result from ponds drying in winter (Christiansen and Bickham 

1989). Additional threats to winter survival include the potential of freezing and/or lactic 

acidosis from prolonged submergence in anoxic water (Ultsch 2006).  

Painted Turtle Adaptations for Overwintering 

Physiological 

Painted Turtles possess a suite of characteristics that enable them to survive in northern 

environments (Ultsch and Jackson 1982, Ultsch et al. 1999, Reese et al. 2000, review by 

Ultsch 1989).  Three main physiological strategies are utilized by Painted Turtles to survive 

overwintering within an anoxic environment: (1) a depression in metabolic processes, (2) 

mobilization of buffering ions from the shell and skeleton to neutralize lactic acid 

accumulation in the blood, and (3) the lactic acid “sink” effect of the turtles’ shell and bones 

(Jackson 2002). All species of Painted Turtle have shown the ability to survive in normoxic 

(oxygenated) conditions for up to 150 days of submergence (Reese et al. 2004). When 

overwintering in normoxic environments, Western Painted Turtles have the ability to utilize 
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both anaerobiosis and aerobiosis which further helps reduce plasma lactate concentrations 

(Ultsch et al. 1985; Reese et al. 2004).  

In addition to metabolic depression and plasma lactate buffering, Painted Turtles can also 

store excess lactic acid in the bones and shell (Jackson et al. 2000, Jackson 2002). Prolonged 

anoxia results in increased lactate concentrations in the shell and bones, reaching similar 

levels to those measured in plasma. It is estimated that 40-45% of total body lactate resides 

within the bone and shell during winter, and during recovery from anoxia in spring, lactate 

levels drop in the shell and bones, and in plasma (Jackson et al. 2000, Jackson 2002). It is 

suggested that other species of anoxia tolerant freshwater turtles may also have this ability 

(Reese et al. 2002).  

Of all Chrysemys subspecies, the Western Painted Turtle exhibits the greatest ability to buffer 

lactate accumulation and can survive the longest duration of submergence in anoxic waters 

(Reese et al. 2001, Reese et al. 2004, Jackson 2002). When Western Painted Turtles are 

placed in normoxic conditions to simulate hibernation, plasma lactate concentrations remain 

lower than when the animals are submerged in anoxic environments. This suggests that 

Western Painted Turtles have the ability to combine anaerobic and aerobic metabolism 

mechanisms under contrasting environments (Ultsch and Jackson 1982; Reese et al. 2004).  

Behavioural  

Painted Turtles use a wide variety of sites for hibernation. They overwinter in small lakes and 

ponds that freeze over entirely in winter, but can also be found in streams (COSEWIC 2006). 

The total water depth of Painted Turtle overwintering spots tends to be 20-100 cm depth 

beneath the ice (Taylor and Nol 1988, St. Clair and Gregory 1990). Painted Turtles have been 

recorded to bury into anoxic substrate up to 45 cm depth, but also have been observed 

overwintering atop the substrate within a normoxic water column
 
(Taylor and Nol 1988, St. 

Clair and Gregory 1990, Crocker et al. 2000, Rollinson et al. 2008). It is thought that Painted 

Turtles bury into substrate to avoid predators such as otters and muskrats that remain active 

during winter (Ultsch et al. 1985, Ultsch 2006). When buried, the turtles remain at a slightly 

higher and more stable temperature than they would in the water column, which is preferable 

to maintain dormancy. Temperatures at overwintering spots measure between 3°C and 6.3°C 

(Peterson 1987, Taylor and Nol 1989, Crawford 1991, Rollinson et al. 2008), and dissolved 
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oxygen levels can vary from normoxic (13.6 mg/L) to anoxic (0.1 mg/L) during hibernation 

(Rollinson et al. 2008).  

The hibernating behaviours of Painted Turtles have primarily been studied in natural water 

bodies, whereas anthropogenic environments (especially those subject to change) may pose 

additional challenges. Hydroelectric operations that are managed for power generation tend 

to follow a general trend in water level manipulation, and can range up to 20 m difference 

throughout the annual cycle. Populations of Painted Turtles have established in locations that 

have been manipulated for human-use, such as hydroelectric reservoirs, but the animals’ 

methods of dealing with these additional pressures in winter have not been studied.  

RESERVOIR ENVIRONMENTS  

Fluctuating, anthropogenic environments such as hydroelectric reservoirs provide an 

interesting backdrop to study how species respond behaviourally to changes in habitat. 

Hydroelectric reservoirs can display characteristics similar to both lotic and lentic 

environments, and can often be intermediate of the two (Nogueira et al. 2012). Reservoirs are 

characterized by three different water level phases dictated by hydroelectric operations as a 

result of anthropogenic demand and seasonal precipitation regimes. The three water level 

phases reservoirs typically exhibit are designated as the maximum level phase, emptying 

phase and minimum level phase (Geraldes and Boavida 2005). These phases generally follow 

the same annual cycles, and depending on their location, can reach peak water levels in 

summer (July/August), emptying through the winter and into spring, reaching the lowest 

levels in March/April when spring freshet begins to refill the reservoir once again. Ecological 

processes within reservoirs are dependent upon and/or at the mercy of these varying phases, 

and species that inhabit reservoir environments must be adaptable to such conditions. 

A primary threat identified for freshwater turtle populations residing in reservoirs is the 

reduction or elimination of nesting sites and basking habitats during the active season 

(Gardner and Oberdorster 2010). In winter, however, most lakes and reservoirs at northern 

latitudes are covered with a thick sheet of ice. Though many reservoirs maintain a certain 

level of water flow beneath the ice, this is restricted by hydroelectric operations, and many 

sections of a reservoir can become stagnant during this period. This results in a decreased 

concentration of dissolved oxygen, termination of gas exchange between water and the 
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atmosphere, and a restriction of light penetration (Puklakov et al. 2002, Prowse et al. 2007). 

Additional water level fluctuations in winter can alter the reservoir environment and pose 

unique challenges to inhabiting animals, including freshwater turtles. Studying turtles in 

these environments will help us understand both the propensity of these animals to deal with 

a suite of overwinter conditions, and the implications for conservation and resource 

management.  

THESIS OBJECTIVES 

For my thesis, I examined in detail the overwintering ecology of Western Painted Turtles 

(Chrysemys picta bellii) in the Revelstoke Reach Reservoir near Revelstoke, British 

Columbia, Canada (50.9981° N, 118.1956° W) in the winters of 2012-13 and 2013-14. This 

population is faced with unique circumstances for overwintering; not only are they one of the 

most northerly populations of turtles in Canada, but they inhabit a fluctuating water reservoir 

controlled by upstream hydroelectric operations.  

The goal of my research was to closely examine the habitats used by overwintering Western 

Painted Turtles within this fluctuating, northern environment. A key component of my 

research was to investigate the apparent variation in overwintering tactics used by these 

animals (congregated and dispersed) within the reservoir, and to determine if this variation 

was out of necessity caused by local environmental conditions (lack of overwintering habitat, 

hydroelectric influence), or ‘selection’ for optimal overwintering habitat characteristics. 

From an applied standpoint, my work also sought to determine the potential impacts to 

overwintering turtles as a result of hydroelectric operation and provide recommendations for 

managing fluctuating reservoir environments.  

These animals are of particular interest because the species is recognized in British Columbia 

as ‘blue-listed’ (vulnerable) and this population occurs within an anthropogenic environment 

near the northernmost extent of the species’ range (COSEWIC 2006). These conditions likely 

act to constrain a number of viable life-history strategies (including overwintering) occurring 

at this location. This provided a unique opportunity to examine causes and effect of different 

overwintering behaviours in this species. 
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STUDY AREA AND PREVIOUS RESEARCH  

I conducted my work within the reservoir on the Columbia River near Revelstoke, British 

Columbia, Canada (50.9981° N, 118.1956° W). The Columbia River is the largest river in the 

Pacific Northwest and the fourth largest river in North America (Osbourne 2012). The 

hydraulic head of the Columbia River drops 820 m from its headwaters at Columbia Lake to 

its entrance into the ocean, making it a desirable river for hydropower generation. Beginning 

in the late 1960s the Columbia River was fragmented first with the implementation of the 

Hugh Keenleyside Dam (1968) and later with the Revelstoke Dam (1984), which then 

created the Arrow Lakes Reservoir (BC Hydro 2007). This reservoir lies between the 

Monashee and Selkirk Mountains spanning approximately 240 km from Revelstoke, British 

Columbia (BC), Canada south to Castlegar, BC. The Arrow Lakes Reservoir is separated into 

the Upper and Lower Arrow Lakes and is licensed to operate between 418.64 MASL (meters 

above sea-level) and 440.1 MASL with a maximum allowable level as approved by the 

Comptroller of Water Rights of 440.75 MASL (BC Hydro 2007). Revelstoke Reach, where 

my study sites were located, is a subsection of the Upper Arrow Lakes section of the 

Columbia River that is located immediately south of the town of Revelstoke (50.9981° N, 

118.1956° W), and approximately 20 km south of the upstream Revelstoke Dam.  

The climate of the Columbia Basin is variable by year and by season and can also vary 

geographically due to the terrain and elevational gradients throughout the Basin. The 

Revelstoke area is characterized by a humid continental climate with no dry season. 

Precipitation falls most often as snow during the cold months from approximately mid-

November to early March, though Revelstoke does receive a fair amount of rain in the warm 

season as well that can contribute to small peaks in run-off. Snow packs provide the 

dominant source of run-off into the Columbia Basin, and peak run-off occurs from May to 

early July (BC Hydro 2007). The reservoir is characterized by rapid infill in spring with a 

drop in water levels through August that is dependent by year and may be held back for fall 

storage (Hawkes et al. 2013). The Revelstoke Reach Reservoir reaches its lowest water 

levels in winter/early spring, and begins to fill again come spring freshet (Hawkes et al. 

2013).  
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Mean monthly air temperature (°C) followed the same trend as the 30-year mean in both 

study years, except the lows recorded in February 2014 (Figure 1-4). The winter of 2013 saw 

less precipitation than the 30-year mean, though did receive more precipitation than the long-

term mean in the months of March and June (Figure 1-4). Similarly, the months of 2014 

received less precipitation than the long-term mean, except for March. The reservoir 

followed a predictable trend over both winters compared to the 10-year mean, and reached its 

lowest point in February of both years (Figure 1-5).  

Previous to the present study, Basaraba (2014) conducted a two-year pilot study on the same 

population of turtles, primarily focusing on summer ecology. This provided a foundation for 

my work in terms of habitat use, seasonal movement, nesting success and demographics. 

Basaraba estimated a population size within the reservoir of 242 adult and juvenile turtles. 

She identified six nesting sites located a maximum of 80 m from shoreline, and observed 

females lay only one clutch per year. Basaraba determined that individual turtles occupied an 

average of 72 ha of habitat space and moved an average of 59 m per day. Although Basaraba 

observed a change in basking substrates as water levels rose during summer, she did not 

determine any adverse effects from the fluctuating water table (reservoir operations) on this 

population. Basaraba did monitor a small number of turtles over winter and detected 

variations in the spatial orientation of overwintering sites used by reservoir subpopulations; 

in one location (Montana Slough) turtles congregated in a floating mass of vegetation to 

overwinter, and in a separate location (Airport Marsh) turtles overwintered scattered across a 

large area.  

In keeping with the Basaraba study, I focused my work on the two main subpopulations of 

turtles in the reservoir (Airport Marsh and Montana Slough - see Figure 1-6). To provide 

comparative data, I also focused on Turtle Pond (TP), a small isolated body of water 

(approximately 2.74 ha in size and 1 km from the reservoir) that supports a relatively large 

number of turtles (>100 turtles, Tarswell 2013, pers. comm.) (Figure 1-6). The Airport Marsh 

and Montana Slough sites are both easily influenced by changes in water elevation, whereas 

Turtle Pond is an isolated pond that is unaffected by changes in the reservoir. Cartier Bay is 

an additional location within the reservoir (Figure 1-6) where Basaraba detected a  
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Figure 1-4: Mean monthly temperature (°C) and precipitation (mm) for Revelstoke, BC for 

study periods Jan - Dec 2013 and Jan - May 2014 compared to the 30-year mean (1971-2000, 

Environment Canada 2014). Standard deviation error bars available for 30-year mean 

temperatures only.  
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Figure 1-5: Annual reservoir elevations (MASL) in both study years compared against the 

10-year mean (±SD) (BC Hydro data retrieved from LGL Ltd.).  
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Figure 1-6: Revelstoke Reach showing study locations Airport Marsh, Montana Slough, Williamson Lake and Turtle Pond, also 

showing non-overwintering location Cartier Bay, Revelstoke Reach, BC, Canada.
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small number of turtles (6 sightings) during summer. To date, there is no evidence of animals 

overwintering in this water body and it was therefore excluded from my study. Additionally, 

Williamson Lake supports a small number of turtles; however sufficient data were not 

collected to include this location in my study. 

Additional Details on Water Bodies in Study 

Airport Marsh is approximately 130 ha in size and sits at an elevation of 437 MASL, the 

highest of all the study sites (Figures 1-7 and 1-8). My research area in AP spanned 1.9 km 

N-S and approximately 900 m E-W at the widest point. This area is bordered by the 

Revelstoke Airport runway (Figure 1-6), and my sampling area did not exceed this boundary. 

This site is characterized by bulrush (Schoenoplectus tabernaemontani), common cattail 

(Typha latifolia), milfoil (Myriophyllum spp.), pondweed (Potamogeton spp.) and reed 

canary grass (Phalaris arundinacea) (Basaraba 2014).  

Montana Slough is the farthest south study site (approximately 2.5 km south of Airport 

Marsh) and lies at an elevation of approximately 432 MASL (Figures 1-9 and 1-10). This site 

is characterized by a massive, floating vegetated island that changes size relative to reservoir 

water levels. My research area at this location was approximately 43 ha in size. At full pool 

(July/August), only small sections of the island remain above water, and in low water the 

land mass extends far west toward the main channel of the Columbia River. The floating 

island is typified by moss (Sphagnum spp.), willows (Salix spp.), sedge (Carex spp.) and reed 

canary grass (Basaraba 2014), with some rooted coniferous trees (Pinus spp.) surviving as 

well. 

Turtle Pond is a small isolated pond nestled within a residential area just off of Airport Way 

(Figure 1-11 and 1-12). It is surrounded by private residential property and resort land owned 

and managed by Revelstoke Mountain Resort. Turtle Pond is approximately 6.5 ha in size, 

spanning 460 m length (N-S) and 175 m at its greatest width (E-W). Turtle Pond is at a 

higher elevation than both Airport Marsh and Montana Slough, at 443 MASL. In summer, 

the dominant vegetation at Turtle Pond is Yellow Pond Lily (Nuphar luteum), with willows 

(Salix spp.) and cottonwoods (Populus spp.) bordering the water body.  
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Figure 1-7: Airport Marsh, February 2014. Photo by author. 

 
Figure 1-8: Airport Marsh, May 2014. Photo by author.  
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Figure 1-9: Montana Slough, February 2014. Photo by K. Larsen. 

 
Figure 1-10: Montana Slough, June 2013. Photo by author. 
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Figure 1-11: Turtle Pond, February 2013. Photo by N. Audy. 

 
Figure 1-12: Turtle Pond, May 2014. Photo by author.  
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Chapter Two 

OVERWINTERING ECOLOGY OF A NORTHERN POPULATION OF WESTERN 

PAINTED TURTLES (CHRYSEMYS PICTA BELLII) IN A CANADIAN RESERVOIR 

 

INTRODUCTION  

Overwintering is a critical life-history stage for species inhabiting temperate and more polar 

conditions. These extreme environments are characterized by harsh, cold conditions that can 

last up to half the year or longer. Many species’ ranges are limited by these conditions, 

especially ectothermic animals that have internal body temperatures strongly tied to their 

immediate environment. Ectotherms such as herpetofauna, therefore display both behavioural 

and physiological adaptations in order to survive winters (Ultsch 1989, Crocker et al. 2000, 

Muir et al. 2014). Physiological adaptations include freeze tolerance, supercooling, metabolic 

depression and other methods of buffering acidosis (Jackson 1968, Ultsch and Jackson 1982, 

Ultsch et al. 1985, Voituron et al. 2000, Jackson et al. 2000, Jackson 2002, Packard and 

Packard 2003, Jackson et al. 2004, Reese et al. 2004, Storey 2006, review by Bickler and 

Buck 2007, Tattersall 2008, Costanzo and Lee 2013, Costanzo et al. 2013, among others). 

Behavioural responses include using overwintering sites that afford appropriate micro-habitat 

conditions (Aleksiuk 1976, Taylor and Nol 1989, Harvey and Weatherhead 2006, Mathies 

and Martin 2008, Newton and Herman 2009, Rollinson et al. 2008, Edge et al. 2009, Gienger 

and Beck 2011, among others). Important in this regard is protection from lethal 

temperatures, predators, and desiccation. For example, using aquatic habitats as hibernacula 

should, in theory provide refuge from subzero temperatures (Meeks and Ultsch 1990, Strain 

et al. 2012), yet not all aquatic environments will automatically exclude this threat, while 

other factors such as predation and acidosis may still be present (Ultsch 1989, Edge et al. 

2009). 

Northern adult freshwater turtles almost exclusively hibernate underwater (but see Claussen 

et al. 1991), and the species best known for tolerating aquatic hibernation for extended 

periods is the Painted Turtle (Chrysemys picta) (Jackson 1968, Ultsch and Jackson 1982, 

Ultsch et al. 1985, Herbert and Jackson 1985a, 1985b, Ultsch et al. 1999, Reese et al. 2000, 

Crocker et al. 2000, Reese et al. 2004, review by Storey 2007). In particular, the westernmost 
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subspecies of this turtle (C.p. bellii) reaches latitudes of 52°N or greater in Canada, where it 

is capable of tolerating relatively long periods of anoxic conditions due to an advanced 

ability to regulate and store lactic acid during hypoxia (Ultsch et al. 1985, Jackson 1997, 

Jackson 2000a, 2000b, Reese et al. 2004).  

The overwintering physiology of Painted Turtles has been relatively well studied compared 

to the ecology and behaviour of these animals in their natural environment.  Still, a number 

of studies have reported the animals overwintering in ponds and small lakes at shallow 

depths (20-100 cm) and either nestle within the bottom substrates to a depth as low as 45 cm 

(Ernst 1972, Peterson 1987, Taylor and Nol 1989) or lie atop the substrate within the 

oxygenated water column (St. Clair and Gregory 1990, Crocker et al. 2000, Rollinson et al. 

2008). Use of specific habitat characteristics for overwintering sites also has been 

documented in other species of northern freshwater turtles (Greaves and Litzgus 2008). Some 

freshwater turtles also may possess the ability to select overwinter sites based on pre-

hibernation habitat conditions; Rollinson et al. (2008) found that female Painted Turtles in 

Algonquin Park, Ontario hibernating in oxygenated waters used sites based on dissolved 

oxygen (DO) concentrations, whereas those using anoxic conditions selected sites based on 

temperatures. Edge et al. (2009) found variation in hibernacula site selection based on 

oxygen availability as a result of ice cover in a northern population of Blanding’s Turtles 

(Emydoidea blandingii). These trends indicate that northern freshwater turtles can be specific 

in their overwinter habitat use, but also may display behavioural plasticity based on the 

characteristics of their environment. However, most studies have looked at turtles inhabiting 

natural environments; few have investigated the overwinter effects of an anthropogenic, 

manipulated environment.  

Intuitively, reservoir environments may pose challenges to turtles, particularly if they are 

locations in areas where surface ice forms. Such environments may be characterized by 

fluctuating water tables that pose additional threats to the animals, including the potential for 

winterkill. Overwinter mortalities have been reported as a result of being embedded into the 

ice, for both small and large numbers of turtles (St. Clair and Gregory 1990, Murphy and 

Corn 1977 cited by Christiansen and Bickham 1989). Fluctuations in water levels also may 

affect water quality parameters, including temperature, dissolved oxygen, pH and 
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conductivity; Rollinson et al. (2008) identified temperature and dissolved oxygen as the 

primary factors influencing overwinter site selection for northern Painted Turtles. Given 

these observations, it is prudent to investigate further the relationship between turtles, winter, 

and fluctuating environments such as reservoirs.  

I studied the overwinter ecology of a population of Western Painted Turtles (Chrysemys picta 

bellii) (WPT hereafter) in a hydroelectric reservoir in British Columbia, Canada. My study 

built upon a preliminary study by Basaraba (2014) on the general ecology and population 

demographics of this population. Although Basaraba (2014) did not focus on the 

overwintering stage of the animals’ life history, her work with telemetered animals suggested 

that overwintering in the reservoir occurred in two primary locations, and moreover, the 

animals in these two locations appeared to be displaying different tactics. She reported that 

all the turtles in one subpopulation within the reservoir overwintered congregated whereas 

others were dispersed. Following on this, the specific goals of my research were to (1) 

examine more closely the variation in overwintering tactics occurring across the different 

subpopulations of turtles in this area, (2) determine if the variation is out of necessity due to 

lack of suitable overwintering habitat, and (3) document if changes in reservoir levels during 

winter elicit response(s) in the turtles, and if so, examine if this phenomenon contributes to 

the use of different tactics. 

METHODS 

Study Area 

My field research took place from January 2013 – May 2014 in a section of the Arrow Lakes 

Reservoir referred to as ‘Revelstoke Reach’, lying immediately south of the town of 

Revelstoke, British Columbia, Canada (50.9981° N, 118.1956° W). The reservoir lies within 

the Upper Arrow Lakes portion of the Columbia River and is regulated by two hydroelectric 

dams. This section of the river has existed as a reservoir since the implementation of the 

downstream Hugh Keenleyside Dam in 1968, and was further affected by the upstream 

Revelstoke Dam starting in 1984. The operator (BC Hydro) currently is licensed to manage 

up to a 20-m fluctuation in water levels, from 418.64 – 440.1 MASL. The reservoir typically 

reaches full pool between July-August, decreasing throughout fall and winter until reaching 

its lowest levels in March-April (BC Hydro 2007). During the two winters of this study, the 
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fluctuations recorded were within this normal range, and the lowest levels occurred in 

February of each winter (see Figure 1-5, Chapter 1).  

Average total precipitation at this location is approximately 94.6 cm per year, half of which 

falls as snow (based on 30-year averages 1971-2000, Environment Canada 2014). Revelstoke 

experiences below-zero temperatures from November to March and can have snow depths 

reaching a maximum of 173 cm in February (Environment Canada 2014). Ice develops on 

local water bodies in November, and persists from approximately December to early April 

(pers. obs.) 

My research focused on two locations within the reservoir that support the overwhelming 

majority of turtles, identified as Airport Marsh (AP) and Montana Slough (MS) (Basaraba 

2014). Both locations lie on the eastern side of the reservoir, being approximately 2.5 km 

straight-line distance from one another. The more northern site (AP) sits at an elevation of 

437 MASL, is approximately 130 ha in size and is sheltered from the main channel of the 

Columbia River by an airport runway that buffers sudden increases in water level. 

Submerged areas of AP can reach depths up to 2.5 m at high water (mid-summer), and the 
site is characterized by a soft, muddy substrate that can be up to 0.5 m thick.  

Montana Slough (MS) is slightly lower in elevation (432 MASL) and is also smaller in size 

as measured by maximum area during high water (43 ha). Montana Slough is relatively 

sensitive to water level fluctuations from reservoir operations and can nearly flood entirely 

during full pool. A unique feature of the MS site is a vegetated island (approx. 1-2 ha in area 

at high water) that features a small pool of water designated as ‘Winter Pond’ (approx. 2 m 

deep, 0.13 ha in size). At high water, MS can reach depths of approx. 3 m with substrate 

depths of approx. 10 cm in the main body and 30-40 cm in Winter Pond. In her study, 

Basaraba (2014) documented 8 telemetered turtles overwintering in Winter Pond in the 

winter of 2011-2012.  

To compare effects from the reservoir, I also studied a nearby isolated water body [Turtle 

Pond (TP)] that contained turtles. Turtle Pond is ≈0.5 km from the reservoir and is 6.5 ha in 

size. It is ≈2.5 m at its deepest point, and substrate depth ranges from 15-40 cm.  
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Trapping and Equipment 

In spring (May 2013/2014) and late summer (August-October 2013) I captured adult turtles 

using hoop traps baited with sardines and/or cat food. Traps were checked at a minimum 

every 12 hours. I incorporated 19 adult turtles still carrying transmitters from the Basaraba 

(2014) study, recapturing these animals when necessary to remove and replace aging 

transmitters. I targeted equal numbers of male and female adult turtles for telemetry and 

distinguished the two sexes by secondary sexual characteristics (Harless and Morlock 1979). 

Turtles were selected to ensure the radio-transmitters (models SI-2FT, SB-2F, or AI-2FT 

from Holohil Systems Ltd., Ontario CA) and all attachment material did not exceed 5% of 

body weight. Forty-one of 44 transmitters used were temperature sensitive (pulse rate 

proportional to temperature, Models SI-2FT and AI-2FT), and I affixed them to the turtles by 

drilling small holes at the posterior of the carapace and securing them using stainless steel 

wire (Grayson and Dorcas 2004, Basaraba 2014) (Figure 2-1) to reduce potential loss due to 

shedding of the scutes (CCAC n.d., Grayson and Dorcas 2004). Marine epoxy (Amazing 

GOOP® Marine Epoxy Paste, eclecticproducts.com) was placed around the wire to prevent 

snagging and unwinding.  

In the first winter, temperature-sensitive transmitters were relied on to determine carapace 

temperatures, with iButtons and depth/temperature loggers introduced in the second winter to 

provide corroborating data. Ultimately, the iButtons and depth/temperature recorders 

produced the most reliable and precise temperature data (depth recorders accuracy 0.01°C, 

iButtons 0.5°C) and these data were used exclusively for turtles in the second winter. Two 

telemetered turtles from each of the three study sites carried temperature and depth recorders 

(DST-milli-TD and DST-milli-F depth recorders, Star-Oddi, Iceland). These recorders were 

affixed to the side of the carapace opposite the radio transmitter (Figure 2-1). An additional 

five telemetered turtles each carried a Thermochron iButton® temperature datalogger 

(Maxim Integrated, USA) waterproofed in Plasti-Dip (Performix Brand® - see Grayson and 

Dorcas 2004) and bonded to radio transmitters with marine epoxy (as described above).   
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a.  
 

b.  

Figure 2-1: a. Radio transmitter (gold) and depth recorder (white) attachment and placement 

on posterior of Western Painted Turtle (C.p. bellii) carapace. Wires on the depth recorder 

were trimmed similar to those on the radio transmitter prior to marine epoxy placement b. 

Radio transmitter and depth recorder attachment on posterior of Western Painted Turtle (C.p. 

bellii) with marine epoxy. Photos by author.  
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Spatial Arrangement of Overwintering Turtles 

During the winters of 2012-13 and 2013-14, I collected data on each turtles’ location using a 

wide-band radio receiver (Lotek Biotracker), aYagi three-element antenna and a hand-held 

GPS instrument (Garmin GPSMAP 64S). When conditions did not allow safe travel over ice, 

I estimated turtle locations from safe points using triangulation. Once ice cover permitted 

safe travel, I was able to pinpoint the exact location of each telemetered turtle and collect 

associated habitat data. 

Terminology 

A number of terms have been used interchangeably in the literature to describe groups of 

animals, including communal, congregated and aggregated (among others); herein I have 

chosen to use the term congregated and to define it as an animal’s location within 5 m of 

another animal (see similar boundaries used by Brown and Brooks 1994, Edge et al. 2009). 

Similarly, I refer to animals located more than 5 m from one another as dispersed.  

Conditions at Overwinter Sites  

The ambient temperature at each turtle’s location was determined using the pulse-rate of the 

transmitter. Using an ice auger (Kovacs Enterprises Inc.), a 5-cm hole was made through the 

ice, enabling me to measure ice depth (cm), water depth (cm), dissolved oxygen (mg/L), 

water temperature (°C) (using a YSI Model 85 Handheld Oxygen, Conductivity, Salinity and 

Temperature System). I also obtained data on reservoir elevation (MASL), precipitation 

(mm) and local air temperature (°C). Air temperature and precipitation data were retrieved 

from Environment Canada’s ‘Revelstoke Airport Auto British Columbia’ weather station 

(located at 50.5729 N, 118.1034 W, Environment Canada 2014). Reservoir elevation data 

(MASL) was recorded at the Fauquier hydrometric station established by BC Hydro (located 

at 49.5220 N, 118.0448 W, BC Hydro 2013-14).  

In the second winter of the study (November 2013 – March 2014), I continued the same 

procedures described above, and I also used underwater cameras (GoPro Hero 3 (Black 

Edition) and Jetview Electronics Motorized 360° Video Camera JE-CM27-AS with DVR) in 

an attempt to gain visual contact with the turtles. I attached game cameras (Bushnell Trophy 

Cam) to trees along shorelines to track ice cover by taking a photo each day at 11:00 AM. 

Cameras at reservoir sites were positioned in the vicinity of known overwintering turtle 



39 

 

 

locations, and at the isolated site (TP) the camera was placed along the opposite shore from 

turtle locations.  

Conditions at Reference Sites 

The different overwintering tactics used byf turtles between water bodies required different 

approaches to enable comparisons between turtle locations and reference sites. At the AP 

site, data from the first winter revealed the turtles were using two main areas to overwinter 

(see Results). In the second winter, I therefore collected fine-scale data on the habitat used 

and available to each hibernating animal using identical procedures to those outlined above, 

sampling ice depth (cm), water depth (cm), temperature (°C) and dissolved oxygen (mg/L) at 

random directions 2 m and 5 m from each turtle at AP. This methodology only was used at 

AP since turtles at MS displayed congregated hibernation in the first study winter, and thus I 

focused there on obtaining comparative habitat data using a broader approach within the 

entire water body.  

Habitat data were collected throughout water bodies using a network of recording stations. 

Dissolved oxygen (mg/L) and temperature (°C) were monitored by LGL Ltd. throughout the 

winter months of 2012-13 at all water bodies using 4 PME MiniDot Dissolved Oxygen 

Loggers (Precision Measurement Engineering, USA) (1 TP, 1 MS, 2 AP) (Figures 2-2 and 2-

3). The following winter (Jan – April 2014) I positioned seven dissolved oxygen/temperature 

stations (3 HOBO U26-01, Onset, USA and 5 PME) near known locations of overwintering 

turtles (2 TP, 3 MS, 2 AP). Loggers were secured to the top of either a submerged milk crate 

or laundry basket to keep them above the substrate and within the water column. The data 

loggers were programmed to record at least every 60 minutes over the course of the winter.  

During the second winter of my study, I collected reference temperature profiles of the water 

column through a network of 30 temperature monitoring stations placed throughout each of 

my three study sites (11 MS, 9 AP, 7 TP) (Figures 2-2 and 2-3). To do this, I drove 1.5 m 

length sections of concrete reinforcing bars (‘rebar’) into the lake substrate in an array of 

locations haphazardly chosen to represent the range of conditions occurring in the sites. The 

precise locations were chosen based on my own knowledge of the physical structure of the 

water bodies, as well as the knowledge gained to date on the hibernating sites of turtles. Each 

stake had a minimum of three iButton® data loggers encased in waterproof cases and affixed  
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Figure 2-2: Location of automated data-recording stations in Airport Marsh and Turtle Pond in both study winters.  
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Figure 2-3: Location of automated data-recording stations in Montana Slough in both years. 
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to the stake with zip ties and duct tape. Though the exact depths of the data loggers changed 

in accordance with water levels and ice thickness over winter, their data reflected 

temperatures at the substrate level and the midway and surface points in the water column.  

The data loggers were programmed to take a reading every 4 h. Additionally, to monitor 

temperature and ice conditions along the shoreline, I placed two submerged containers at 

each location, each containing one iButton®, approximately 10.5 m (± 5.1) from the 

shoreline at depths between 15-40 cm. In total, 98 iButtons® were used to record water 

temperatures in all locations over the second winter (November 2013 – May 2014).  

Data Analysis 

Habitat variables were analyzed using R (version 3.0.2). Statistical significance was guided 

by α = 0.05. Stated means are given ± SD, unless otherwise noted. Comparisons between 

water bodies or movements were made using repeated-measures of Anova (RMANOVA). A 

linear mixed-effects modeling (packages lmer and lmerTest in R) was used to conduct a 

resource selection-test using habitat data from turtle and non-turtle locations at AP. Spatial 

analysis was completed using QGIS 2.0 Dufour, 2.6 Brighton (www.qgis.org) and Google 

Earth. Graphs were created using SigmaPlot (Version 8.0).  

RESULTS 

All told, I collected telemetry data from 50 turtles; 19 of these animals carried radio 

transmitters through the winter of 2012-13, with another 31 turtles similarly monitored over 

winter 2013-14. One of the tracked turtles was found floating dead in AP in May 2014. This 

individual overwintered in a location with no standing water from Dec 2013 – Mar 2014 

suggesting it died from freezing or desiccation. Six of the 31 turtles in the second winter 

could not be located prior to or during the winter: three of these six missing animals were 

subsequently live-trapped in the spring of 2014, and a fourth was located using telemetry. Six 

turtles successfully carried depth recorders over winter, though one of the recorders became 

damaged and did not record usable data. Five additional turtles carried iButtons®, only three 

of which were retrieved. To the best of my knowledge none of the devices attached to the 

turtles became dislodged or lost.   
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Warmer temperatures during the first winter resulted in thinner average ice depths than in the 

following year (Table 1). Camera records (taken in the second winter only) indicated the AP 

and MS water bodies were ice-covered for the same period of time (130 days), whereas the 

surface of TP remained frozen for longer (147 days).  

Reservoir fluctuations during my study were within the range of those recorded over the past 

decade, except from December 2012 - early January 2013 when water levels were higher 

than normal (refer to Chapter 1, Figure 1-5). Between the two study years, a relatively larger 

and more rapid drop in water levels occurred during the first winter.  

Did turtles in different locations show different overwintering tactics? 

Patterns of dispersion overwinter 

Variation in the spatial arrangement of overwintering turtles was evident between reservoir 

locations in the first winter of study, when all turtles at MS overwintered congregated, and all 

turtles at AP overwintered dispersed (Figures 2-4 and 2-5). The congregation in MS was 

created by all telemetered turtles in this area gathering in Winter Pond, with an average 

distance of 3.4 m (± 1.8) between individuals. In the second winter, turtles at AP again 

showed a dispersed spatial arrangement (n = 7), except for two turtles located closer together 

in February (1.5 m apart). More substantial changes occurred at MS in the second winter: 

two turtles congregated in Winter Pond during the winter (average 2 m ± 0.9), and two others 

congregated within the main arm of Montana Slough in February and March (average 3.6 m 

± 2 apart). The other three telemetered animals at MS in the second year overwintered 

dispersed: two within the main arm and one in Winter Pond over 5 m from the other 

telemetered turtles. Isolated from the reservoir in TP, turtles hibernated in a dispersed pattern 

in both winters.  

Overwintering turtles in all three sites buried themselves in substrate, as suggested by data 

from the depth recorders and 21 failed attempts to obtain visual contact using the submersible 

cameras. By comparing manually measured water depths at turtle locations to depths 

recorded simultaneously by the depth recorders, I estimated the turtles were on average 

buried 26.3 cm ± 37 into the substrate (Figure 2-6). Additionally, one turtle was observed 

partially buried at TP on Dec 15, 2013 (Figure 2-7) and a second turtle was confirmed buried 

in March 2014 at a stream site in AP.  
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Table 1: Mean monthly air temperature (°C) and ice depth (cm) (measured from Dec – Mar) 

for the Revelstoke Reach portion of the Arrow Lakes Reservoir during the two winters of 

study.  

 

December January February March

2012-13 -1.1 ± 2.4 -2.7 ± 2.7 0.7 ± 1.4 2.8 ± 2.5 25 ± 8.4

2013-14 -3.6 ± 5.2 -1.8 ± 2.8 -6.1 ± 5.8 0.9 ± 2.6 36 ± 16.8

Mean Air Temperature (°C) Ice Depth

(cm)
Year
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Figure 2-4: Overwintering turtle locations in February of both 2013 (yellow) and 2014 (red) at Airport Marsh and Turtle Pond, 

Revelstoke Reach, Arrow Lakes Reservoir.  
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Figure 2-5: Overwinter turtle locations in February of both 2013 (yellow) and 2014 (red) at Montana Slough, Revelstoke Reach, 

Arrow Lakes Reservoir.  
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Males and females were apparent in the congregations of turtles in both winters. In the first 

winter one female was present of the six congregated turtles  in Winter Pond at MS; 

however, in all months of the winter she was positioned near the center of the male group, 

averaging 5.4 m distance from each of the five males from January to March. In the second 

winter two male-female pairs hibernated congregated in separate locations of MS.  

Site fidelity 

Of the nine turtles that were followed over both winters, only one turtle in AP showed any 

degree of fidelity to a specific hibernating site, having only 9.4 m between its 2013 and 2014 

locations. Other turtles (n=6) using the same water body in both years had specific 

hibernating sites separated by on average 257 m (SD ± 204).  

Movements between water bodies  

The majority of turtles followed over two study winters (7/9) remained in the same water 

body. One exception was a turtle that spent 2013 in AP along the southern shore and 

travelled to MS (~4.1 km south) to overwinter in 2014. Another turtle showed the opposite: 

overwintering in 2013 within Winter Pond at MS, then travelling to the northern end of AP 

(~5.4 km) and spending winter 2014 in a flowing ice-free stream.  

Did habitat conditions vary between locations?  

Habitat conditions in the two reservoir water bodies differed very little in either year. In the 

first winter, water depth was significantly deeper at turtle locations in MS (congregated 

hibernation) compared to AP (dispersed hibernation) (F1,2 = 32.07, P = 0.03; Figure 2-8). In 

the second study winter, ice depth was the only metric to vary between turtle locations in 

each of the water bodies, being thinnest at MS (F2,6 = 5.6, P = 0.04) (Figure 2-9). Within 

sites, the small pond where turtles congregated in MS recorded significantly lower dissolved 

oxygen levels compared to loggers in the main body of water (F1,2 = 22.06, P = 0.04) in the 

second winter.  
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Figure 2-6: Mean weekly depth (±SD) of three turtles carrying depth recorders (n = 2 Airport 

Marsh and n = 1 Montana Slough) from October 2013 to April 2014. 

 
Figure 2-7: Partially buried Western Painted Turtle beneath ice at Turtle Pond viewed 

through hole drilled with ice auger, Dec 15 2013. Photo by author.  
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Figure 2-8: Mean water depths (cm) (+SD) at turtle locations in Airport Marsh and Montana 

Slough in the first study winter (2013).   

 

Figure 2-9: Mean ice depths (cm) (+SD) at turtle locations in all water bodies in the second 

winter (2013-14) (AP = Airport Marsh, MS = Montana Slough, TP = Turtle Pond).   
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Habitat comparison between turtle and reference locations 

During the first winter, turtle locations at AP did not vary significantly in temperature or 

dissolved oxygen levels compared to measurements recorded at the stationary loggers (P > 

0.05). In MS both the water temperature recorded at turtle locations within the small pond 

and temperatures recorded by the radio transmitters attached to the turtles’ carapace were 

colder than the water temperatures recorded at stationary loggers throughout the water body 

(T-tests, P ≤ 0.01) (Figure 2-10). Dissolved oxygen at MS turtle locations did not differ from 

stationary loggers (P > 0.05). Turtle carapace temperatures did not vary significantly between 

water bodies in the first year (F-tests, P > 0.05) (Figure 2-11). 

In the second winter, dissolved oxygen was not significantly different between turtle 

locations and stationary loggers in any water bodies, except at MS where turtle locations 

measured higher dissolved oxygen in comparison (T-test, P = 0.04). Conversely, 

temperatures were significantly lower at turtle locations compared to stationary loggers in 

both AP (T-test, P = 0.03) and TP (T-test, P < 0.01) in this winter, but not at MS (P > 0.05). 

Turtles at MS in the second winter recorded significantly higher carapace temperatures than 

both AP and TP (Dec – Mar: T-tests P < 0.01) (Figure 2-11). Despite turtles being buried in 

substrate, carapace temperatures at all sites in the second winter were most comparable to 

mid- and high-column temperatures (Figure 2-12).   

Turtle Presence Models 

At the 2 and 5 m scales, the best model for predicting turtle presence at AP was that 

containing water temperature alone as the explanatory variable. No other models (both 

univariate and multivariate) alone or in combination had rankings close to this model (i.e., 

ΔAIC ≤ 2, Table 2). Water temperatures at turtle locations were colder than those measured 

both 2- and 5-m away. The predictive accuracy of this model using the 2-m data correctly 

predicts turtle presence 53% of the time, and the 5-m model 56% of the time.   
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Figure 2-10: Mean monthly logger, turtle carapace and turtle location temperature at 

Montana Slough, January – March 2013. All means show ±SD. 

 
Figure 2-11: Turtle carapace temperatures (°C) over both study winters at all locations (AP = 

Airport Marsh, MS = Montana Slough, TP = Turtle Pond). All means show ±SD. 
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Figure 2-12: Mean water body temperature (±SD) profiles showing high, mid, substrate, surface-water interface and shoreline 

temperatures in comparison to mean turtle carapace temperature for all water bodies from Nov 2013 to Apr 2014.  
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Table 2: Summary of AIC and ΔAICc values for the top five candidate models assessing the 

influence of water temperature (°C), dissolved oxygen (mg/L), ice depth and water depth 

(cm) at the 2 and 5-m scales on turtle presence at Airport Marsh in the second study winter 

(2013-14). Repeated measures were accounted for by including the turtle identifier as a 

blocking variable within months (i.e., Month|Turtle).  

AIC ΔAICc

120.43

125.46 5.03

127.85 7.42

127.8 7.37

129.94 9.51

AIC ΔAICc

120.45

125.73 5.28

125.78 5.33

128.19 7.74

130.18 9.73

Note: Italics  indicates top model

Explanatory Variables (2 m)

Temperature + Dissolved Oxygen ~ ID

Water Depth ~ ID

Temperature ~ ID

Dissolved Oxygen ~ ID

Ice Depth ~ ID

Explanatory Variables (5 m)

Temperature + Dissolved Oxygen ~ ID

Temperature ~ ID

Dissolved Oxygen ~ ID

Water Depth ~ ID

Ice Depth ~ ID



54 

 

Do changes in reservoir levels elicit movements in overwintering turtles? 

Turtles commonly displayed movements throughout the winter at both the reservoir and non-

reservoir locations, ranging from 0 – 95 m over the winter months. There was not a 

significant difference in distance moved by turtles between the water bodies in either year or 

between the two different tactics used (annual comparisons analyzed by month, F tests, all Ps 

> 0.07, Figure 2-13; by tactic, F-tests, all Ps > 0.20). ).  

Habitat Conditions between Movements 

Turtle movements during the first winter did not result in the animals experiencing notably 

different conditions from their previous location (F-tests, all P > 0.06). In the second winter 

at MS, turtles moved to areas of lower temperature and lower dissolved oxygen levels 

between January and February, and between February and March moved to areas with 

increases in both these metrics (DO: F2,8 = 5.45, P = 0.03; Temp: F2,8 = 4.35, P = 0.05). At 

TP, turtles moved to areas with increasing dissolved oxygen throughout the winter (F2,7 = 

13.02, P = < 0.01). Water temperature and dissolved oxygen levels did not change 

significantly between turtle movements at AP (F tests, P > 0.05).  
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Figure 2-13: Mean distance moved by turtles (+SD) among winter months at each location 

shown for both years (AP = Airport Marsh n = 17, MS = Montana Slough n = 13, TP = 

Turtle Pond n = 10).  
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DISCUSSION 

This study is the first to focus on the overwintering ecology and behaviour of a population of 

Western Painted Turtles (WPT, Chrysemys picta bellii) within a fluctuating reservoir 

environment. The results of my research indicate the variation in tactics used by 

overwintering turtles is not correlated with water temperature, dissolved oxygen or water 

depth. Additionally, this population of WPT was not negatively affected by the fluctuating 

water table as a result of hydroelectric operations during winter. These animals appear able to 

respond to local conditions by using sites with suitable habitat characteristics for winter, 

namely water temperature (°C) and subsequent water depth (cm). The extremely low 

incidence of overwinter mortality (apparently due to freezing) that I detected suggests the 

animals avoid freezing temperatures successfully. The prevalence of overwinter movements 

also suggests turtles retain the ability to avoid unfavorable conditions should they result from 

fluctuating water levels.  

In general, this population of Western Painted Turtles are using overwintering sites with 

shallow water depths (< 1 m), soft substrate into which they bury, normoxic oxygen content 

(> 0.5 mg/L) and cold but above freezing water temperatures (~ 0.37 – 1.1°C). These 

overwinter habitat conditions are comparable to those reported in similar studies of this 

species (Ernst 1972, Peterson 1987, Taylor and Nol 1989). Other studies found overwintering 

Painted Turtles did not bury into substrate during winter, although they did select locations 

with similar attributes (shallow depths, close to shore) (St. Clair and Gregory 1990, Crocker 

et al. 2000, Rollinson et al. 2008).  

Why are turtles showing variation in their overwintering tactics? 

This study verified the use of different overwintering tactics (i.e., congregated vs. dispersed), 

confirming that suggested by Basaraba (2014). In the first winter of study, turtles used the 

small pond structure in the MS location exclusively, providing deeper water depths for 

overwintering. Deeper water depths would make the animals less susceptible to changes in 

water levels brought about by reservoir operations. The tactics used at both AP and TP were 

consistent over both study winters, but not so at MS. The variation in tactics between years at 

MS suggests the criteria by which sites are used may not be consistent among individuals 

over years, especially since this is an environment that is constantly undergoing fluctuation 
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(see Brown and Brooks 1994). Habitat conditions did not vary between tactics in the second 

winter, although micro-habitat conditions at turtle locations within MS did vary somewhat. 

Turtles overwintering in the small pond in the second winter experienced near anoxic 

conditions, compared to the normoxic conditions in the main body of MS.  

I observed both congregated and dispersive hibernation tactics within this population of 

Western Painted Turtles. Congregated hibernation has been documented in similar studies of 

freshwater turtles at their northern extent (Brown and Brooks 1994, Litzgus et al. 1999, 

Crocker et al. 2000, Edge et al. 2009, Newton and Herman 2009). Researchers have 

speculated turtles may overwinter congregated to optimize mating opportunities prior to or 

following hibernation (Gregory 1982, Ultsch 1989). This is a plausible theory for this 

population, as both sexes were commonly represented within the congregations of 

overwintering turtles.  

Congregated hibernation also may indicate a lack of suitable overwintering sites (Gregory 

1982, Ultsch 1989, Newton and Herman 2009, Edge et al. 2009). This can be inferred by 

high levels of site fidelity (Gregory 1982): if an animal returns to the same spot in 

consecutive years, it may be out of necessity rather than selection. I observed only one 

instance of site fidelity, indicating suitable overwintering conditions do not appear to be 

limited in the three water bodies I studied. Of the nine turtles followed over two winters, two 

relocated to a different water body altogether, suggesting a range of suitable overwinter 

habitat is available.  

Turtle Behaviour and Habitat Availability  

My inability to make visual contact with turtles under the ice, coupled with depth recording 

from the animals, jointly suggests that the animals buried into the bottom substrate to 

overwinter. This behaviour has been documented in other freshwater turtle populations at 

northern latitudes and is thought to provide protection from predators while reducing the 

threat of freezing into surface or water-column ice (Ultsch et al. 1985, Ernst et al. 1989, St. 

Clair and Gregory 1990, Brown and Brooks 1994). Certainly, otter (Lontra canadensis) 

observations and sign were routine at the study site (Duncan, pers. obs) and this animal has 

been implicated elsewhere in overwinter mortality of turtles (Brooks et al. 1991).  
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Turtle carapace temperatures in all locations were colder compared to the average substrate 

temperatures measured at the stationary loggers which provided a profile of available 

conditions. Had I not used depth recorders on turtles and instead relied on the thermal data to 

infer the turtles’ position (see Rollinson et al. 2008), I may have concluded the turtles were 

not buried in the substrate given their near-freezing carapace temperatures. Additionally, this 

suggests these animals may be displaying thermoregulatory behaviours in selecting colder 

sites to maintain metabolic suppression. Rollinson et al. (2008) found Painted Turtles 

utilizing thermally-stable environments near 0°C to overwinter, and similar studies have 

found freshwater turtles overwinter in locations colder than available adjacent habitats 

[Painted Turtles (Chrysemys picta) (Taylor and Nol 1989, Crawford 1991), Spotted Turtles 

(Clemmys gutta) (Litzgus et al. 1999, Rasmussen and Litzgus 2010), Wood Turtles 

(Glyptemys insculpta) (Greaves and Litzgus 2008), Blanding’s Turtles (Emydiodea 

blandingii) (Edge et al. 2009), and Snapping Turtles (Chelydra serpentina) (Paterson et al. 

2012)]. Near-freezing temperatures for overwintering may help suppress metabolism and 

subsequently reduce oxygen demands (Herbert and Jackson 1985a, 1985b, Ultsch and 

Jackson 1982, Ultsch 1985/89 in Greaves and Litzgus 2008), ultimately conserving energy 

that can later be diverted into growth and reproduction (Rollinson et al. 2008). Similar to this 

idea, lab studies on frogs (Rana temporaria) show that under hypoxic conditions voluntary 

hypoxia occurs, whereby the temperature preference of the animals changes compared to that 

in normoxic water (Tattersall and Boutillier 1997). This behavioural response to hypoxia 

helps preserve metabolic stores and delays the onset of lactic acidosis (Tattersall and 

Boutillier 1997).  

Do reservoir operations impact overwintering turtles? 

Movements and relocations 

This population of Painted Turtles displayed notably longer movements throughout winter in 

comparison to similar studies (Sexton 1959, Gibbons 1968, Taylor and Nol 1989, St. Clair 

and Gregory 1990). Overwinter movements by freshwater turtles have been documented in 

similar studies, and often cease once the water reaches a certain temperature or level of 

anoxia (Taylor and Nol 1989, St. Clair and Gregory 1990, Crocker et al. 2000). Documented 

movements tend to be of short distance, up to 3 m; however Crocker et al. (2000) reported 

movement of 100 m by an Eastern Painted Turtle in Rhode Island between late February and 
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early March, comparable to the 95 m travelled by one individual between January and 

February in my study.  

Various reasons have been postulated as to why movements, such as those recorded in this 

study, occur over winter. I hypothesize the movements made by this population of Painted 

Turtles may be required to aid in regulation of plasma lactate by exiting from the mud, 

utilizing dissolved oxygen via extrapulmonary needs, and again burying to avoid potential 

predators. Extrapulmonary oxygen uptake is thought to be an important adaptation for 

freshwater turtles overwintering beneath the ice at northern latitudes (Ultsch and Jackson 

1982, Ultsch et al. 1985, Ultsch et al. 1999, Crocker et al. 2000, Greaves and Litzgus 2007). 

Reese et al. (2004) confirmed that Western Painted Turtles (Chrysemys picta bellii) have the 

ability to utilize both anaerobiosis/aerobiosis during long-term submergence in oxygenated 

water. Based on the variability in depths and temperatures from depth recorder data and the 

mean distance moved between months, it appears movements by this population were made 

within the water column and not by shuffling through the substrate. In future, this could be 

investigated by sampling plasma lactate levels throughout winter and looking for trends 

between movements and the extent of acidosis.  

There was no clear association between habitat variables and turtle relocations, and turtles 

did not relocate to areas of deeper water depth as might be expected with changing water 

levels. The only consistent trend was apparent at TP where dissolved oxygen concentrations 

increased between movements throughout the second winter. This did not appear to be a 

natural trend within the waterbody, based on the stationary logger data, therefore it is 

possible turtles were intentionally moving to areas of higher dissolved oxygen in this water 

body. Due to the limited amount of location data (one point per month), my data do not 

provide a conclusive test of whether turtles in the reservoir move in response to sudden 

changes in ice or water levels. Nevertheless, these movements do show that the turtles are 

able to successfully move to different areas within water bodies throughout winter. As few 

turtles exhibited long-distance movements between water bodies, this may indicate most 

turtles are able to fulfill all stages of their life cycle within one water body.   
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CONCLUSIONS 

My data suggest the variation in tactics used by turtles hibernating in this study area is not 

linked to habitat conditions (water temperature, dissolved oxygen and depth). This 

population does not appear to be negatively affected by the fluctuating water table. Suitable 

overwintering habitat does not appear to be limiting at this location, and the turtles appear to 

be resilient to the changing water levels and also have the ability to move beneath the ice if 

conditions become unfavorable. As well, turtles may use hibernation sites with colder 

temperatures in an attempt to exploit voluntary hypothermia and reduce metabolic losses. 

Turtles in all water bodies buried in substrate to overwinter, likely to avoid the active otters 

and perhaps to provide an additional buffer from fluctuations. I hypothesize turtle 

movements throughout winter may be an attempt to regulate plasma lactate via 

extrapulmonary needs and/or to facilitate closer access to potential mates.  
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Chapter Three 

TURTLE POPULATIONS IN NEIGHBOURING WATER BODIES: COMPARING 

ANTHROPOGENIC VS. NATURAL HABITATS  

INTRODUCTION 

The display of different behaviours within animal populations generally is considered to 

reflect adaptive plasticity, or the use of contrasting tactics that function best under different 

conditions (Welcomme 1979, Stearns 1989, Sih et al. 2011, Tuomainen and Candolin 2011, 

Sih 2013, Snell-Rood 2013). In some cases, this plasticity may result in contrasting 

behaviours being detected between conspecifics even in the same population, providing a 

unique backdrop to investigate how animals respond to altered environments, and what 

consequences may result. Potential ramifications of behavioural change may include impacts 

to body condition, access to mates or reduced survival, and (ultimately) evolutionary 

implications (example in Noble et al. 2013). The potential for the evolution of alternative 

behavioural tactics may be increased in long-lived species (Baird et al. 2012), but the effects 

of utilizing these tactics in populations or species may not always be evident within short 

term studies. Further, effects (positive or negative) stemming from local environments may 

be more subtle or indirect (Lomas et al., in press), suggesting they may be more readily 

detected by examining population structures and demographics.  

Of particular interest are situations where varying tactics are displayed within populations.  If 

at some scale this variation shows a spatial pattern (i.e., animals in certain areas show 

different tactics), it suggests a plastic response by the animals to localized conditions.  For 

example, African killifish (Nothobranchius furzeri) occupy both permanent and temporary 

ponds; in the latter habitat, embryonic development and post-hatching growth is more rapid 

coinciding with smaller adult body size and a shorter life span (Polačik et al. 2014).  Despite 

this behavioural variation due to localized conditions, fecundity, physiological aging and 

propensity to mate do not vary (Polačik et al. 2014). Similarly, Berven (1988) showed a 

variation in the reproductive traits of a single population of Rana sylvatica relative to age and 

environmental conditions between years. The youngest reproductive females [1 year] 

produced a large number of small eggs, whereas older females [3 years] produced a small 
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number of large eggs (Berven 1988). Clutch size also varied with body size, as a factor of 

annual variation in precipitation affecting food levels and activity patterns (Berven 1982).  

 

Compared to behaviours associated with reproduction, variation in hibernation tactics for 

ectotherms, particularly reptiles, appear to occur more across the range of particular species 

(i.e., over changes in latitude) rather than within populations. For example, northern Painted 

Turtles (Chrysemys picta) are better able to tolerate anoxia at low water temperatures 

compared to their southern counterparts (Reese et al. 2004), and the choice of hibernacula by 

conspecifics in different populations may vary according to latitudes (e.g., Great Basin 

Gopher Snake – Williams et al. 2015).  However, environmental conditions at any specific 

location may presumably favour a single overwintering tactic, thus making it less likely that 

different behaviours will be detected in the same population. Indeed, examples of this type of 

variation in overwintering behaviours are scant, although inter-individual variation in reptile 

behaviours connected with temperature have been documented, including maximal spring 

speed and preferred body temperature in lizards (Artacho et al. 2013), as well as in defensive 

behaviours of snakes (Citadini and Navas 2013).  

 

Hibernation strategies in turtles have been well studied, for both terrestrial and aquatic 

environments. Species that hibernate on land may in some cases develop resistance to 

subzero temperatures (Ultsch 1989, review by Storey 2006, Currylow et al. 2013) whereas 

aquatic hibernators in general may be able to avoid freezing conditions, but instead may need 

physiological mechanisms for dealing with prolonged periods of submersion, sometimes in 

anoxic conditions. The overwintering adaptations of Painted Turtles (Chrysemys picta) are 

particularly well studied, in part because variation in hibernating strategies/tactics may occur 

between age classes within the same population: hatchling Painted Turtles may remain on 

land (in the nest) throughout winter, versus adults that consistently hibernate aquatically 

(Storey et al. 1988, Constanzo et al. 1995, Lee and Constanzo 1998, Packard et al. 1997, 

Packard et al. 2001, Packard and Packard 2001, Constanzo et al. 2008, Riley et al. 2014). 

Further, the ability of submerged adult Painted Turtles to tolerate hypoxic conditions for 

extended periods has been extensively examined (see Jackson 1968, Ultsch and Jackson 

1982, Ultsch et al. 1985, Herbert and Jackson 1985a, 1985b, Ultsch et al. 1999, Reese et al. 
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2000, Crocker et al. 2000, Reese et al. 2004, review by Storey 2007). This variation in adult 

Western Painted Turtle behavioural overwintering strategy, however, has not been reported 

on.  

In Chapter 2, I described variation in aquatic hibernation tactics within a population of 

Western Painted Turtles (C. p. belli) near the northern limit of the species.  This variation, 

first detected by Basaraba (2014), shows a spatial pattern: turtles in one section of a reservoir 

tend to form aggregations over winter, whereas in a neighbouring portion of the same 

reservoir the hibernating animals tend to be dispersed. Chapter 2 of this thesis presents a 

more detailed examination of this phenomenon indicating that this variation in tactics was 

not linked to spatial or temporal patterns of presumed key habitat variables (water depth, 

dissolved oxygen, water temperature). I also showed that the fluctuating water levels of the 

reservoir (and possible shifts in ice cover) did not impact the overwinter survival of the 

animals, nor precipitate movements under ice. An important complement to this baseline 

work is a more direct comparison of the subpopulations. Information on survival, density, 

and the sizes of individuals therein is important for understanding the costs and benefits of 

using different hibernation tactics.  

 

Herein I present a comparison of demographics and other descriptors of the two 

subpopulations of reservoir turtles. To add to this comparison, I include data from a 

neighbouring group of turtles that inhabit a smaller body of water not influenced by reservoir 

operations. Thus, this comparison of hibernating tactics provides a more general and broader 

study of how habitat quality for these animals varies between anthropogenic (i.e., reservoir) 

and natural water bodies.   My specific objectives were to: (i) compare population sizes and 

densities of the animals in the three bodies of water, (ii) conduct a body size comparison 

between all locations, and (iii) evaluate the overwinter impacts on turtle body condition 

between the non-reservoir and reservoir locations.  

METHODS 

Study Area 

This research took place from January 2013 – May 2014 in a section of the Arrow Lakes 

Reservoir, lying immediately south of the town of Revelstoke, British Columbia, Canada 
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(50.9981° N, 118.1956° W). This section of the Columbia River has existed as a reservoir 

since the implementation of the downstream Hugh Keenleyside Dam in 1968, with further 

additional effects coming from the upstream Revelstoke Dam (1984) (BC Hydro 2007).  

Western Painted Turtles occur further north than any other species of turtle in North 

America, extending into south-central areas in Canada. Being so far north, winters here are 

longer with ice cover over the water bodies occurring from late November to early/mid-April 

(Chapter 2). Following Basaraba (2014), I continued the collection of basic demographic and 

morphological data on the turtles occupying the two portions of the reservoir where the 

overwhelming majority of turtles live. Movements by turtles between these two water bodies 

(approx. 2.5 km apart) occur rarely (Chapter 2).  Of these sites, Airport Marsh (AP) is a large 

marshy bay bordered by an airport runway where turtles overwinter in a dispersed fashion 

(using the criteria of >5 m between nearest hibernating neighbours – Brown and Brooks 

1994, Edge et al. 2009).  Montana Slough (MS) is a smaller wetland characterized by a 

floating vegetated island and turtles there tend to hibernate in a more clumped fashion, often 

gathering within a smaller body of water encircled by vegetation.   Turtle Pond is 

approximately 1 km from the shoreline of the reservoir; it is a small body of water (6.9 ha) 

that has no direct connection to the reservoir, although at least one incidence of a turtle 

moving into this pond from the reservoir has been recorded. Because movements between the 

three sites are rare but present (Chapter 2, Basaraba 2014), I hereafter use the term 

‘subpopulation’ to refer to the groups of turtles inhabiting the different water bodies. For 

more details on these specific study sites see Chapter 2 and Basaraba (2014). 

Turtle Capture and Morphology 

Basaraba (2014) reported female-biased capture using basking traps, so I used hoop traps 

exclusively during my trapping periods. In spring (May) and late summer (August-

September/October) of both 2013 and 2014, I captured turtles using hoop traps baited with 

sardines and/or cat food. Traps were checked at a minimum every 12 hours. Traps were set at 

all study locations: Airport Marsh (AP), Montana Slough (MS) and Turtle Pond (TP). I also 

captured turtles opportunistically by dip net or hand capture. Adult turtles were notched with 

an individual code using a triangular file (Cagle 1939). Juvenile turtles were not marked to 

preclude damage to the shell before full ossification (Cagle 1939). However, measurements 
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and photos for identification were collected. Morphological measurements recorded for all 

turtles were carapace length (cm) and weight (g). Turtles were sexed based on secondary 

sexual characteristics and the relative positioning of the cloaca (Macartney and Gregory 

1985). Samples of adult turtles were equipped with radio transmitters as part of the Chapter 2 

study on overwinter behaviour. These animals furnished precise measurements of habitat use, 

movements and survival.  

Data Analysis 

I combined data collected by Basaraba (2014) over 2011-12 with my dataset from 2013-14 to 

estimate the number of turtles in each of the subpopulations using K-sample mark/recapture 

methods (Krebs 1999) available through MARK software. In the absence of genetic data, 

these subpopulations were considered to be closed due to the low frequency of detections for 

turtles moving between them (Basaraba 2014, Chapter 2). Turtles were grouped according to 

the year they were captured in (2011, 2013 or 2014). Because the reservoir undergoes 

fluctuation in water levels on an annual cycle, available turtle habitat also fluctuates, 

therefore I used telemetry data to represent the areas used by these animals in the two 

locations within the reservoir and constructed minimum convex polygons (QGIS Version 2.6 

Brighton) to convert population estimates to densities. The population density of TP was 

estimated using the surface area of the water body, since turtles were located throughout the 

enclosed polygon area over the course of each study year.  

Turtle body size comparisons involved data collected by both Basaraba (2014 unpublished) 

and myself. In 2011, turtles were captured from April – September, in 2013 in May, August – 

October and in 2014 in May. Differences between means for turtle size [carapace length, 

weight] were determined using a Kruskal-Wallace test [H] with a post-hoc Dunn’s Test or 

ANOVA [F] with post-hoc Tukey Test (depending on homoscedasticity) using the software 

package R (version 3.02). Homogeneity of variances was tested using Fligner’s Test due to 

departures from normality (Conover et al. 1981). Body condition was estimated using the 

residuals of a curvilinear regression of weight (g) against carapace length (cm) for Apr-June 

capture data, and comparing differences between the subpopulations using ANOVA 

(Schulte-Hostedde et al. 2005, Litzgus et al. 2008, Polo-Cavia et al. 2010). Only males were 

used in the body condition analysis because adult females would be carrying clutches 
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following winter, introducing a bias in their weight-carapace length ratio. My interpretation 

of statistical significance was guided by using α = 0.05.  

RESULTS 

Captures and Population Estimates 

The total number of individual turtles captured using hoop traps at AP inclusive of three 

trapping sessions from 2011 and 2013-14 was 38 turtles. Twenty-seven turtles were captured 

at MS, and 29 turtles were captured at TP. Population estimates determined from these 

captures were 75 ± 8.6, 54 ± 15.9 and 52 ± 6 for the AP, MS and TP water bodies, 

respectively. These in turn produced density estimates of 0.6 turtle/ha in AP and 1.3 

turtles/ha in MS. Using the surface area of TP produced a density estimate of 8 turtles/ha.  

Body Size and Condition between Locations 

A strong relationship was shown between turtle weight (g) and carapace length (cm) for both 

adult and juvenile turtles across all locations (Figure 3-1). Turtle weights and lengths of 

female turtles captured at TP were higher than females captured at both MS and AP (Dunn’s 

Post-Hoc “Bonferroni” (weight) P < 0.002 , (length) P < 0.02).  Male turtles at TP were also 

larger in both weight and length than male turtles at MS (Tukey Post-Hoc (weight) P = 0.02 , 

Dunn’s Post-Hoc “Bonferroni” (length) P  < 0.003) however were comparable to those at AP. 

Interestingly, juvenile turtles at MS were larger than those captured at AP (both weight and 

length, F1,18 = 9.78 (weight) and 11.55 (length), Ps < 0.05). However, there was not a 

significant difference in male turtle body condition between locations following winter  (F2,40 

= 0.03, P = 0.97) (Figure 3-2).   
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Figure 3-1: The relationship between carapace length (cm) and weight (g) for Western 

Painted Turtles captured in 2011 (Apr-Sept), 2013 (May, Aug-Oct) and 2014 (May) in all 

three study sites (AP = Airport Marsh, MS = Montana Slough, TP = Turtle Pond) at 

Revelstoke BC, Canada.  
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Figure 3-2: Comparison of mean body condition scores (residuals from the regression of 

weight (g) on carapace length (cm)) ± SE of male Western Painted Turtles captured in each 

study location in 2011, 2013 and 2014 (Apr-June). (AP N = 14; MS N = 13; TP N = 16).  
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DISCUSSION AND CONCLUSIONS 

Perhaps the most striking result from my analysis is that the density of turtles in the smaller 

Turtle Pond was much higher than that in the two reservoir subpopulations, yet the animals at 

this location were not smaller, and (at least the males) did not differ in body condition. 

Presumably, the habitat at TP provides better conditions (foraging, basking, rearing etc.) and 

therefore is able to provide a higher carrying capacity in comparison to the other 

subpopulations. I hypothesize that the large amount of algae within the pond may provide 

ample food for the turtles, which may help them reach larger sizes. I also hypothesize that the 

prevalence of basking substrates available within Turtle Pond may draw turtles to this 

location, as there are few logs and rocks available within the reservoir for turtles to use. 

Nevertheless, density estimation of the reservoir populations are comparable to other 

population estimates at the northern extent of the species range (0.9 – 7.2 turtles/ha 

Macartney and Gregory 1985). It should be noted that my estimates of the reservoir locations 

are lower than the previous estimate for this population (2.0-2.2 turtles/ha in AP and MS 

combined, depending on water level, Basaraba 2014). This may be indicative of a shift in 

population sizes, or may also be a result of different methods used to calculate surface area.  

 

Despite the differences in densities between the three sites, there were no detectable 

differences in body condition between male turtles early in the spring. Intuitively, one would 

consider body condition to be influenced by density through intraspecific competition. Body 

condition indices have been negatively correlated with population densities in the marine 

green turtle (Chelonia mydas) (Bjorndal et al. 2000), however, studies on freshwater turtles 

are lacking (but see Kennett and Georges 1990 relating body condition to different habitat 

types). Additionally, my analysis included metrics taken in spring as indicators of body 

condition (weight, carapace length) to represent physical stress as a result of overwintering 

between the subpopulations. I recommend comparing measurements prior to overwintering 

(once foraging ceases) to provide more information on the physical effects of density 

between subpopulations; however, I recognize these data would be difficult to collect given 

the challenge of capturing turtles when they are not feeding.   
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All told, the results herein and that presented in Chapter 2 do not suggest any ramifications 

(positive or negative) for the different hibernating tactics detected in this population of 

Western Painted Turtles. As well, I did not detect any noticeable differences in the body 

condition indices of the different subpopulations living in or adjacent to the reservoir 

regardless of physical and temporal differences between locations. These turtles do not 

appear to be negatively affected despite some obvious differences in the conditions facing 

turtles in the Turtle Pond versus the larger reservoir water bodies.  

However, differences detected in the subpopulation of turtles inhabiting Turtle Pond 

compared to the reservoir sections (Airport March and Montana Slough) strongly suggests 

some factor(s) other than those I examined are influencing local densities and body size 

distributions of this animal. Bennett et al. (2009) found a similar result comparing Northern 

Map Turtle populations between fragmented and intact sites; turtles in the control (intact) 

sites were significantly larger than those in the fragmented (dammed) sites. It is possible that 

TP provides superior habitat or resources such as food availability, basking structures, 

overwintering conditions and/or access to mates. Another reason may be that TP is in fact an 

open population having constant immigration occurring from elsewhere, which I was unable 

to measure in my short study period. Further, density estimates for aquatic turtles will be 

influenced by the precise method(s) used to calculate habitat area. Certainly, defining area 

seems more intuitive when dealing with a small, landlocked body of water such as TP 

compared to the much broader reservoir basin that encompasses the AP and MS 

subpopulations.  Nevertheless, the magnitude of difference in my density estimates across 

subpopulations seems to suggest that a considerably higher density of turtles occurs in TP, no 

matter what algorithm is used in the calculations.  

A number of direct and indirect indicators have been used as measures of habitat quality, 

including but not limited to survival, reproduction, body condition, spatial and temporal 

patterns, and environmental constraints (Johnson 2007). Whether density is an accurate 

predictor of habitat quality has been subject to considerable debate and study (Van Horne 

1983, Johnson 2007). Assuming the reservoir water bodies have suboptimal habitat because 

of lower turtle densities may not be correct; one study found freshwater turtle densities 

(including Chrysemys picta and other species) were greater in rural ponds of a smaller size 
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compared to larger urban/man-made ponds (Witczak et al.n.d.). Population densities in long-

lived species may not respond immediately to habitat alterations, therefore long-term 

population monitoring efforts may be required to determine if the habitat quality is 

suboptimal in the reservoir (Eskew et al. 2010).  

 

The overarching question behind my research on these turtles is why do turtles within the 

two sections of the reservoir demonstrate different hibernating tactics?  These animals have 

shown plasticity in their overwintering behaviour by altering tactics used between 

subpopulations (Chapter 2). However, the behaviours shown do not appear to be related to 

the key habitat variables that I measured [temperature, dissolved oxygen, water depth], nor 

do they appear to impact the survival and body condition of turtles utilizing the different 

behaviours. Researchers have suggested animals may overwinter congregated to facilitate 

easier access to mates (Gregory 1982, Ultsch 1989) or out of necessity due to a lack of 

suitable overwintering habitat (Gregory 1982, Ultsch 1989, Newton and Herman 2009, Edge 

et al. 2009). Ample overwintering habitat does appear to be available to turtles at all 

locations; however the role of mate proximity in affecting hibernation tactics is plausible for 

this population as both sexes were present in the congregated hibernators. It may also be that 

the factors influencing site selection by hibernating turtles varies between years (see Brown 

and Brooks 1994), something which I failed to detect with my environmental measurements 

(Chapter 2). Such changes (if they occur) may be more readily detected over a longer study 

of overwintering by these animals. Nevertheless, this population may be more likely to 

persist as individuals appear capable of plastic responses to changing environments (both 

spatially and temporally) (Ghalambor et al. 2007).  
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Chapter Four 

MANAGEMENT IMPLICATIONS AND FUTURE RESEARCH 

Plasticity of behaviour (e.g., the ability to shift tactics) presumably reflects selection for 

individuals that can respond to fine-scale variations in the environment.  As suggested by 

Darwin (1859), if variation in behaviour occurs across age classes, and is linked to fitness, it 

may very well be an evolutionary response.   In my study population, this variation could be 

a result of anthropogenic habitat alteration. Identifying the mechanisms by which such 

plasticity develops is clearly beyond the scope of a short-term study, but my work still 

contributes to our general  knowledge of behavioural ecology and plasticity in animals.  The 

fact that my study animals persist in this fluctuating and somewhat artificial environment is 

likely due, to some degree, to their ability to show plasticity in response to their 

surroundings.        

The overarching goal of my research was to improve our understanding of the factors and 

consequences of different overwintering tactics being demonstrated in a population of 

Western Painted Turtles (Chrysemys picta bellii). What made this particularly interesting, 

although somewhat more complicated, is that the animals were living within a fluctuating, 

anthropogenic environment (a reservoir).  I added to this investigation by also comparing the 

basic demographics of the animals in the reservoir to those in an isolated pond not influenced 

by reservoir operations. From a practical standpoint, it also was my intention to provide 

information that would aid in the crafting of effective management strategies for this 

particular reservoir. Herewith I provide a specific list of the results of my thesis that have 

management implications: 

o Turtles within one reservoir location are plastic in their overwintering behaviour, and 

all turtles appear to be resilient to gradual changes in water level in winter; 

o Water temperature, dissolved oxygen and water depth do not appear to influence the 

tactics used by overwintering turtles;  

o Turtles are able to move beneath the ice in winter;  

o The fluctuation in water levels does not appear to limit suitable overwintering habitat 

for Western Painted Turtles in this location;  
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o There were no mortalities detected in my study that could be directly attributed to 

reservoir operations; 

o Differences in the physical environment (between water bodies) do not appear to 

impact the body condition of turtles (males) throughout hibernation; 

o There may be an advantage to those turtles utilizing habitat such as the neighbouring 

Turtle Pond (e.g., deeper water, prevalence of basking logs, smaller water body, food 

availability etc.). I base this suggestion on (i) the high density of turtles and (ii) larger 

size turtles at this location. Certainly, seasonal turtle use and physical habitat 

parameters in Turtle Pond should be further investigated to determine the attraction to 

this water body.  

All told, this study has implications for the management and conservation of the Western 

Painted Turtle. The primary overwintering threats to this population of freshwater turtles 

include: freezing into the ice/desiccation from stranding and  predation. . Given this, 

recommendations for management in anthropogenic environments should involve 

maintaining habitats that provide water depths sufficient for the animals to avoid freezing or 

desiccation overwinter, especially as turtles in this study and others (St. Clair and Gregory 

1990, Crocker et al. 2000) utilize locations with shallow water in winter. Though fluctuations 

in water levels during my study did not appear to negatively affect overwintering turtles, I 

still recommend maintaining water levels that provide at least 1 m of water depth throughout 

winter to avoid the threat of winter mortality.  

Overall, some factor(s) must be responsible for the marked difference in population densities 

I determined between the reservoir subpopulation and the small isolated pond (Turtle Pond). 

The adult turtles in Turtle Pond were larger overall than those in the reservoir, and also were 

living in greater density, however few juvenile turtles were captured at this location. Turtle 

Pond has a number of logs available for basking that have been installed by local landowners. 

It is possible that this habitat enhancement provides a benefit to the turtles at Turtle Pond, 

which may contribute to the higher density and/or the larger body sizes found here. I 

recommend investigating if installing basking logs in the reservoir locations may contribute 

to increasing turtle densities or body sizes. In addition, further research into the nesting 

ecology (namely nest survival, number of females nesting and availability of nesting habitat), 
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abundance and growth rates of hatchlings and basking/foraging tendencies of the turtles in 

each of the locations may provide further insight to this discrepancy in densities.  

Even though turtle movements in my study were not directly correlated to changes in water 

levels, the fact that the turtles displayed winter movements greater than those reported 

previously for northern Painted Turtle populations is notable. I hypothesize the movements 

may be an attempt to acquire oxygen from the water column via extrapulmonary means to 

mitigate plasma acidosis. I also hypothesize that turtles are overwintering in locations with 

cold water temperatures to initiate voluntary hypothermia and thus reduce metabolic losses 

throughout winter. Future work analyzing plasma lactate levels collected during natural 

hibernation in these locations would provide better insight to these hypotheses. 

CONCLUSION 

Winter is a critical life history stage for many northern species, and animals also inhabiting 

atypical environments such as reservoirs or existing at the periphery of the species’ range 

may demonstrate responses tailored to the conditions they experience (Lesica and Allendorf 

1995, Tuomainen and Candolin 2011, Sih 2013). As ectotherms, herpetofauna will be 

sensitive to temperature extremes, and in winter most of these species (including species of 

freshwater turtles) hibernate to avoid unfavourable conditions. Hibernation can occur 

terrestrially or aquatically, requiring the animal to develop behavioural, morphological or 

physiological adaptations in order to survive. Behavioural adaptations can include plasticity 

of behaviours, which may be evident between conspecifics exposed to different habitat 

conditions. The Western Painted Turtle (Chrysemys picta bellii) is a species particularly 

well-known for its physiological adaptations to overwintering (see Jackson 1968, Ultsch and 

Jackson 1982, Ultsch et al. 1985, Herbert and Jackson 1985a, 1985b, Ultsch et al. 1999, 

Reese et al. 2000, Crocker et al. 2000, Reese et al. 2004, review by Storey 2007), however, 

less-studied are the behavioural responses of these animals to spatial and temporal changes. 

Behavioural plasticity, including the ability to shift between overwintering tactics, may be an 

important compliment to the physiological adaptations that these animals possess. Such 

characteristics may be particularly important in allowing populations to persist in 

manipulated environments.   
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My work has clearly shown that animals in my study population exhibit plasticity in their 

overwintering tactics. The animals overwinter either congregated or dispersed, neither having 

a detectable difference on the body condition or survival of the animal. The specific tactic 

displayed at any point in time did not depend on the habitat conditions that I measured (water 

temperature, dissolved oxygen, water depth), and overall, suitable overwintering habitat does 

not appear to be limiting at this location. However, my work also identified variation in both 

the population density and turtle size between the reservoir and isolated subpopulation. This 

may be indicative of a higher prevalence of resources (food, habitat etc.), or differential 

growth patterns occurring in this non-fluctuating environment. Nevertheless, the 

overwintering portion of these animals’ life cycle does not appear to be impacting the ability 

of the population to persist, and my research contributes to our understanding of how Painted 

Turtles are able to tolerate both anthropogenic and highly-seasonal environments. 

Nevertheless, pressures outside of overwintering have been identified for this population of 

Painted Turtles, including road mortality, loss of critical nesting habitat and an abundance of 

predators (Basaraba 2014, Hawkes pers. comm.). These factors may be interacting to control 

or limit the population sizes within the reservoir locations.  

My study focused solely on the overwintering ecology of adult Western Painted Turtles. 

Hatchling Painted Turtles spend their first winter in the nest, emerging the following spring 

and overwintering thereafter in an aquatic environment: this behaviour has been studied 

extensively, (Storey et al. 1988, Costanzo et al. 2001, Packard et al. 1999, Packard and 

Packard 2001, Costanzo et al. 2004, Dinkelacker et al. 2005, among others), yet information 

on the overwintering ecology and survival of juvenile (< 1 year) freshwater turtles remains 

absent. Determining overwinter habitat use, behavioural ecology, survivorship and changes 

in growth and weight are needed to determine how recruitment into populations is affected, 

which may in turn provide insights into population densities. As well, further work 

investigating the general habitat use, diet, threats and demographics of juvenile Western 

Painted Turtles would be valuable for identifying conservation priorities for this population.  
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APPENDIX A: Overwintering Turtle Under-Ice Movement Maps 
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Figure A-1: Overwintering turtle locations at Airport Marsh south in December 2013/January 2014 and March 2014. 
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Figure A-2: Overwintering turtle locations at Montana Slough in December 2013 and March 2014. 
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Figure A-3: Overwintering turtle locations at Turtle Pond in December 2013 and March 2014.
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