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ABSTRACT 
 

Impoundment of water by hydroelectric reservoirs and resulting fluctuations in water 

levels (drawdown zone) may have significant impacts on the surrounding 

ecosystems. For herpetofauna that live in cold climates, such human-induced 

alterations may amplify the difficulties in coping with the environment. My study 

explored the ecology of an extreme northern population (Revelstoke, British 

Columbia, Canada) of western painted turtles (WPT; Chrysemys picta bellii) 

inhabiting a reservoir that constantly fluctuates due to hydroelectric operations. The 

potential challenges this environment poses include inundation of nesting sites, 

increased winter mortality due to water level changes, and changes in the availability 

of aquatic habitat. I used radio telemetry and mark-recapture to identify where turtles 

were nesting and overwintering, and to assess demographics and turtle behaviour in 

relation to the changing water levels. My data suggest that adults and juveniles of 

both sexes used and overwintered in the drawdown zone. Nest inundation as a 

result of reservoir operations did not appear to be a significant threat to the animals 

as all detected nests lay above the high-water mark. Similarly, no incidents of turtle 

mortality were directly attributable to reservoir operations. Changes in water levels 

did affect habitat availability: areas in which turtles were located during early spring 

were subsequently lost as water levels rose, while flooding in other areas created 

seasonal, suitable habitat for turtles that otherwise was not accessible. Modelling 

turtle response to water levels, water temperature, and season suggested that 

changes in water levels did not significantly impact behaviour as measured. 

Appropriate management for this species and other semi-aquatic species that reside 

within drawdown zones is complex, given the reliance on both terrestrial and aquatic 

habitat, the life cycles of the species, movement, changing water levels, and sub-

zero winter temperatures. This research provides a baseline for understanding the 

ecology of turtles in dynamic northern environments. 

 

Keywords: Western painted turtle, Chrysemys picta bellii, northern, hydroelectric, fluctuating 
environment, species management  
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CHAPTER ONE 

INTRODUCTION TO RESERVOIR HABITATS, PERIPHERAL SPECIES, AND 
PAINTED TURTLE ECOLOGY 

 

Reservoirs and Wildlife Populations 
 

The impoundment and control of water has been used since the beginning of 

civilization for irrigation, flood control, urbanization, waste disposal and water supply 

(Baxter 1977; Malmqvist and Rundle 2002). As a management tool, it has expanded 

to include flow rate control, recreation, and energy harnessing (Baxter 1977). 

Although water systems are naturally dynamic, the ever increasing pursuit and 

demand to generate hydroelectric energy can have significant impacts on the 

surrounding environment (Malmqvist and Rundel 2002). Water levels in reservoirs 

fluctuate for various reasons including the release of water for downstream 

requirements such as drinking water, habitat, management, irrigation, flood control, 

recreation, and power generation. Furthermore, waters levels within each reservoir 

can fluctuate seasonally based on precipitation, temperatures that affect the rate of 

snow melt, and demands for power or irrigation.  

 

Wildlife species occupying water bodies subject to flow regulation may be 

particularly susceptible to abrupt changes to habitat type and availability. Both 

aquatic and terrestrial species may be impacted in this manner; however, there is a 

relatively limited amount of research dealing with the ecology and responses of 

wildlife due to water impoundment (Rosenberg et al., 1997; Reese and Welsh 1998; 

McAllister et al., 2001; Greathouse et al., 2006; Limpus et al., 2006; Boyle 2012). 

For the flora and fauna that live in cold climates these human-induced alterations 

may affect their ability to tolerate and endure an already-harsh environment.  

 

Hydroelectric developments create environments where water levels fluctuate, 

generating significant changes to animal habitat. Research has shown that 
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reservoirs, weirs, and independent power projects can increase mercury 

concentrations in fish (Bodaly et al., 2007), promote the establishment of invasive 

species (Light 2003), as well as alter water temperatures, oxygen levels, and flow 

patterns. This in turn can strand fish, dewater or flood spawning/nesting habitat, 

change water depth, and alter habitat for both aquatic and terrestrial organisms 

(McAllister et al., 2001; COSEWIC 2006; Greathouse et al., 2006; Clark et al., 2009; 

Irvine et al., 2008). Changes in flow patterns have indirect effects upstream and 

downstream by altering nutrient flow patterns, and sedimentation (McAllister et al., 

2001; Greathouse et al., 2006; Clark et al., 2009). Some operations create barriers 

between channels and water bodies thereby blocking the movement of animals, 

such as spawning fish, amphidromous shrimp, algal and invertebrate communities 

(Rosenberg et al., 1997; Freeman et al., 2003 Antonio et al., 2007). These 

blockages can decrease populations or ultimately eliminate certain habitat types 

(Reese and Welsh 1998; Freeman et al., 2003; Greathouse 2006). 

 

Anthropogenic changes that affect wildlife habitat (via reservoirs, or any other 

process) may be particularly felt by peripheral populations of animals (Arthington et 

al., 2006; Irvine et al., 2009). Peripheral populations can be defined two ways; the 

first applies to populations that are geographically separated or disjunct, the second 

where populations are ecologically marginal. Such populations experience difference 

environmental influences such as sub-optimal or marginal habitats. Geographically 

peripheral populations can also be ecologically marginal populations. Peripheral 

populations have smaller population sizes, and are more susceptible to catastrophic 

events in comparison to other populations occupying the core of their range (Lesica 

and Allendorf 1995). However, peripheral populations are known to genetically 

diverge from core populations due to added selection pressures, enabling them to 

inhabit environments with harsher conditions (Safriel et al., 1994; Lesica and 

Allendorf 1995). Thus, peripheral populations may become more adapted to living in 

transitional environments, and playing an important role in the survival of the species 

or even the expansion of its range (Lesica and Allendorf 1995; Frazier et al 2006). 

More importantly, these species may be better able to cope with anthropogenic 
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changes to the landscape. However, the combined impacts of natural environmental 

constraints and habitat alteration on peripheral populations needs to be more fully 

explored (Lesica and Allendorf 1995). 

 

One group of species that has attracted a reasonable amount of interest in terms of 

peripheral population ecology is herpetofauna (reptiles, amphibians and turtles). 

Herpetofauna are ectothermic organisms, and therefore are dependent on 

environmental conditions to regulate their body temperature and various other 

biological processes (Voituron et al., .2002). The ecology and distribution of 

herpetofauna is dictated, to a large extent, by ambient conditions. Herpetofauna 

occupying extreme northern climates have evolved to cope with various 

environmental constraints such as relatively cool, short summers and long, cold 

winters. Through the use of behavioural and physiological adaptions, such as super 

cooling, freeze tolerance, and hibernation, these animals can then endure the limited 

time available to feed, grow and reproduce through trade-offs between growth and 

reproduction (St. Clair et al., 1994; Storey and Storey 1996; Pfrender et al., 2008; 

Voituron et al., 2002; Shine 2005). Survival is dependent on their ability to tolerate 

the environment (Voituron et al., 2002), including adaptability to changing 

landscapes and multiple stressors.  

 

Northern turtle populations have been the focus of a number of ecological studies 

(Macartney and Gregory 1985; Ultsch et al. 1985; St. Clair et al. 1994; Litzgus et al. 

1999; Carriére 2007; Greaves and Litzgus 2007; Yagi and Litzgus 2012). The 

Canadian landscape provides a good backdrop for this type of work, as 11 species 

of native freshwater turtles reach their northern limit in the country (SARA 2008). 

The limitation is due, at least in part, to the short summer growing season, mean 

ambient temperatures for egg incubation, and extreme winter temperatures (St. Clair 

and Gregory 1990; Costanzo et al., 1995; Carroll and Ultsch 2007). Extensive 

research has focused on how these animals deal with the environmental constraints 

of cold weather, particularly in those species that range relatively far north, such as 

the painted turtle (Chrysemys picta; St. Clair and Gregory 1990; Costanzo et al., 
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1995; Packard et al., 2001; Willmore et al., 2001; Packard and Packard 2004; Ultsch 

2006; Rollinson et al., 2008). Understanding how change in the habitats of these 

animals (and all other herpetofauna) influence ecology and life-history requisites are 

critical for developing effective management plans that encompass all parts of these 

animals’ life cycles (Heppell and Crowder 1996; Heppell 1998). 

 

Northern, freshwater turtle populations (and those at range peripheries) may be 

subject to the effects of water reservoirs, particularly the dynamic water levels 

created by many hydroelectric operations. Given that freshwater turtles rely on both 

aquatic and terrestrial environments to complete their life-history, the combined 

effect(s) of dealing with northern environmental constraints and those potentially 

brought on by reservoirs needs to be more fully explored. Turtles are long-lived 

species with low juvenile survival rates, and delayed sexual maturity in northern 

environments (Reese 1996; Reese and Welsh 1998; COSEWIC 2006). These 

factors can impede recovery from periods of high adult mortality and can cause 

cumulative impacts on northern turtles who deal with sub-zero temperatures, short 

growing seasons, and habitat loss and fragmentation. Enhancement and mitigation 

measures have been attempted to manage impacts from road mortalities, loss of 

nesting habitat, human disturbance, and nest predation (Macarteny and Gregory 

1985; Maltby unpublished; Clarke and Gruein 2003, Lee 2011). Continued research 

on the ecology of northern turtles is needed to provide a better understanding of how 

these animals manage their environment and increasing human pressures, as well 

as what elements of their habitat may be critical to survival in northern climates. 

 

Turtles and Reservoirs 
 

Populations of northern freshwater turtles have a reliance on both terrestrial 

(nesting, basking) and aquatic (feeding, mating, hibernating) environments. Thus, 

there are a number of possible pathways by which these animals may be impacted 

by reservoir operations: 
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 seasonal or permanent change or loss in available habitat, and/ or the 

elimination of habitat types required by all or some segment of the population; 

 

 loss of shoreline nesting habitat through generally higher year-round water 

levels, forcing females to travel further inland to find alternative sites to lay 

eggs, in turn, this may add to energy expenditure and risk of predation, both 

for adult females and newly-hatched nestlings returning to the water 

(COSEWIC 2006); 

 

 seasonal or periodic inundation of nesting sites within the high and low water 

mark (also known as the drawdown zone): females may choose nesting sites 

that later on become inundated with rising waters, negating the reproductive 

effort;  

 

 fluctuating water levels create, alter, or inundate habitat used for shelter, 

foraging, and basking;  

 

 changes in water temperatures, particularly during winter hibernation; 

changes in winter water levels may expose submerged hibernating turtles to 

unexpected freezing temperatures as the animals lay dormant above or 

buried within the muddy substrates of ponds and lakes (Rollinson et al., 

2008); 

 

 alteration of flow patterns and nutrient levels, creating changes in food 

production; and  

 

 entrapment of individual turtles in outflow currents. 

 

Despite the potential linkage between reservoir operations and impacts on 

freshwater turtle populations, relatively little study has been done to examine this 

relationship. Research on western pond turtles (Clemmys marmorata) in the Trinity 
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River in northwestern California revealed that the elimination of slow-moving waters 

through hydroelectric operations eliminated habitat for smaller turtles (juveniles and 

hatchlings), thereby skewing the age distribution towards adults (Reese 1996; 

Reese and Welsh 1998). Limpus et al., (2006) found that during periods of high 

water release by the Fairbairn Dam (Central Queensland, Australia), turtles were 

becoming trapped by the current on the trash screens and drowning. The study 

recommended additional research to determine if turtle mortality was occurring only 

during high water and if reservoir operations caused barriers to movement. Aside 

from these two studies, the impacts of reservoirs on turtles have been virtually 

unstudied. 

 

Study Species  
 

Painted turtles (Chrysemys picta) are the one of the most northerly freshwater turtle 

species in the western hemisphere. The species consists of four subspecies (C.p. 

marginata, picta, bellii, dorsalis), with a distribution extending from New Mexico and 

Louisiana east to the Atlantic Ocean and west to the Pacific (Figure 1-1). In Canada, 

the species reaches its northern limits, with extreme northerly populations found 

near William’s Lake and Revelstoke in the province of British Columbia. 

 

Painted turtles are members of the Family Emydidae, a taxon that includes most of 

the world’s omnivorous, freshwater turtle species. They are a medium-sized turtle 

with females tending to be larger than males. Their common name is derived from 

their cream to orange coloured plastrons, specifically the plastron of the subspecies 

bellii that can display bright orange and red colours, with a dark design through the 

centre that is present throughout all life stages (Figure 1-2a).  

 

Painted turtles display a typical pond turtle life history with some notable exceptions 

(i.e. neonates can overwinter in the natal nest, and display freeze-tolerance; St. Clair 

and Gregory 1990; Costanzo et al., 2004; Carroll and Ultsch 2007). Females and 

males in northern climates tend to be larger at sexual maturity then conspecifics in 
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southern latitudes (St. Clair et al., 1994). Within southern populations both male and 

females mature between the ages of four and five respectively, while in more 

northern climates male and female turtles reach maturity between 8-10 years and 

12-15 years respectively (Ernst and Lovich 2009). However a study conducted by St. 

Clair et al., (1994) comparing growth curves of southern and northern populations 

found that females were older at sexual maturity than their southern conspecifics, 

but males appeared to mature at a similar rate. 

 

Courtship begins in early spring as the water warms and mating occurs in shallow 

waters; painted turtles have been known to also mate in the fall (Pearce and Avise 

2001). When searching for nesting sites, female painted turtles can move up to 200 

m or more from the shoreline (COSEWIC 2006; Ernst et al. 2009). They appear to 

choose their nesting sites based on an open canopy, slope, aspect, and drainage, 

with sites typically composed of patches of well-drained soil or sand along beaches, 

roadways, and fields facing south to south-west (Schwarzkopfa and Brooks 1987; 

COSEWIC 2006). Once a suitable site is located, the female digs a flask-shaped 

nest, 4 to 14 cm in depth, after voiding cloaca water on the chosen site. A female 

may lay anywhere from 1 to 23 eggs in a nest (average ~12); she then covers the 

nest and returns to the water, providing no post-hatchling care (Pearse and Avise 

2001; COSEWIC 2006). The eggs incubate in the nest and hatch in late summer or 

fall of the same season. Newly-hatched painted turtles in the northern extent of their 

range, overwinter in their nest emerging the following spring (Packard et al., 2002; 

Costanzo et al., 2004; COSEWIC 2006). These northern neonates can remain in 

their natal nest because they are freeze-tolerant, being able to survive temperatures 

below -10 ˚C (Packard et al., 2002). More southern conspecifics emerge from the 

nest the same year that they were laid, overwintering in the water. 

 

In this study, I focused on the western painted turtle, the only native freshwater turtle 

found in the Canadian province of British Columbia. There are two disjunct 

populations in British Columbia and these are designated as the Pacific Coast 

Population and the Intermountain – Rocky Mountain Population units (COSEWIC 
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2006). The animals in the interior of the province are categorized as ‘special 

concern’ under both provincial and federal listings, in part because this population 

exhibits characteristics that make them particularly sensitive or vulnerable to human 

activities or natural events. The coastal population is considered “Red-Listed” by the 

province and “Endangered” by the federal government, as this population faces the 

imminent risk of extirpation or extinction (COSEWIC 2006; SARA 2008). 
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Figure 1-1 Western painted turtle (Chrysemys picta bellii) range map. Star indicates 
location of study site.  



10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-2 Western painted turtles (Chrysemys picta bellii). a. plastron profile and b. carapace profile (Photos by N. 
Basaraba) 

a. b. 



11 
 

Study Site 

 

The Arrow Lakes Reservoir is a portion of the Columbia River that was modified in 

1968 with the construction of the Hugh Keenleyside Dam near Castlegar, British 

Columbia, Canada. The reservoir itself is influenced from outflows of the Revelstoke 

Dam, constructed in 1984 approximately 20 km upstream of my study site. The 

Arrow Lakes reservoir lies within a region of the province that contains a unique 

ecosystem, namely one of the few inland temperate rainforests in the world (Goward 

and Spribilee 2005; Sanborn et al., 2006). The region receives an average annual 

precipitation of 945.5 mm that mostly falls as snow, although precipitation can vary 

from year to year (Environment Canada 2012). Temperature and precipitation 

averages for the past 30 years and during the years of my study (2010 and 2011) 

are displayed in Figure 1-3. During the first year (2010) of my study, precipitation 

was below the 30 year average, except for the month of September when 

precipitation was higher than average. During 2011, precipitation appeared to be 

above average from January to August, but dropped below average for September 

and finished the year around the average levels. The average air temperatures for 

both years of my study were similar to the 30 year average. 
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Figure 1-3 Monthly mean precipitations (mm) and air temperatures (°C) for 
Revelstoke, BC (Revelstoke Airport) for the study periods of 2010, 2011, and the 30 
year average (1971 to 2000; Environment Canada 2012). 
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The Arrow Lake Reservoir can be divided into the Upper and Lower Arrow Lakes, 

which span approximately 230 km between the Monashee Mountains (to the west) 

and the Selkirk Mountains (to the east). The mountains rise to an elevation of 2600 

m and are heavily forested within the Interior Cedar Hemlock (ICHmw3) 

biogeoclimatic zone (Braumandl and Curran 1992). Revelstoke Reach, where my 

study sites were located, is found at the north end of the Upper Arrow Lakes. It is 

approximately 40 km long and 20 km south of the Revelstoke dam. The current 

water licence allows for a 20 m (420 m – 440.1 m MASL) fluctuation in water levels 

within the so-called drawdown zone, and annual reservoir levels vary both in time 

and in magnitude (BC Hydro 2005). Water levels during 2010 and 2011 were higher 

than the 10 year mean, particularly during the spring and winter (Figure 1-4). These 

fluctuations can drastically change the landscape of the river and the floodplains, 

therefore altering the available habitat over a short period of time (Figure 1-6 to 

Figure 1-9). 
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Figure 1-4 Water levels within the Arrow Lakes Reservoir over the course of 2010 and 2011 in relation to the 10 year 
average (1968 – 2012). 
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Figure 1-5 Western painted turtle study locations, Airport Marsh (AP) and Montana 
Slough (MS), Revelstoke Reach, Upper Arrow Lakes Reservoir, Revelstoke Reach 
B.C. Canada.   
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a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-6 Photos a and b of Airport Marsh, Upper Arrow Lakes Reservoir at low 
water, fall of 2009(Photo courtesy of LGL Ltd. 2009). 
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Figure 1-7 Airport Marsh, Upper Arrow Lakes Reservoir at high water, summer 2010 
(Photo by N. Basaraba). 
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a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-8 Photos a and b of Montana Slough, Upper Arrow Lakes Reservoir during 
low water, fall 2009 (Photo courtesy of LGL Ltd. 2009). 

 
  



19 
 

 
 
 
 
 
 
 
 

Figure 1-9 Montana Slough, Upper Arrow Lakes Reservoir at high water, summer 
2010 (Photo by N. Basaraba). 
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Within Revelstoke Reach I focused on two primary research sites, Airport Marsh 

(AP) and the Montana Slough (MS). Aside from these two main sites in the reservoir, 

two additional water bodies upland of the reservoir, Williamson Lake (WL) and Turtle 

Pond (TP), were known to contain turtle populations (Figure 1-5). I focused my work 

on the AP and MS sites, having determined through initial surveys that turtle 

sightings within the reservoir were rarely made elsewhere (pers. observ.; Hawkes 

and Tuttle 2010). Site WL and TP were considered secondary sites and surveyed 

periodically throughout the study (active season; average once/week, winter; 

once/month) to investigate movement, and compare detectability of the turtles 

(Appendix E).  

 

Airport Marsh (AP) is a large (approximately 81 ha based on water levels in June) 

area that has an extensive emergent vegetation along the shoreline. This area is at 

a higher elevation, 438 m AMSL, in comparison to MS and is sheltered from the 

main channel of the Columbia River by the airport runway (see Figure 1-6 and 1-7). 

When water levels rise, the marsh expands as the adjacent land is inundated. This 

creates a series of interconnected shallow ponds and ephemeral wetlands 

dominated by bulrush (Schoenoplectus tabernaemontani), common cattail (Typha 

latifolia), pondweed (Potamogeton spp.), milfoil (Myriophyllum spp) and reed canary 

grass (Phalaris arundinacea) where turtles were often found basking on or in 

submerged vegetation.  

 

Montana Slough (MS; approximately 28.3 ha based on water levels in June) is a 

wetland complex adjacent to Airport Way Road at an elevation of 436 m AMSL and 

approximate 2.5 km south of AP. This area exists as a functional wetland that 

completely floods as reservoir levels rise, with the exception of a large floating island 

of vegetation (fen) approximately 1 to 2 ha in area (at high water). The wetland’s 

dominant vegetation is moss (Sphagnum spp.), willows (Salix spp.), sedge (Carex 

spp.) and reed canary grass. 
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Thesis Objectives 
 

I studied western painted turtles (Chrysemys picta bellii) near Revelstoke, British 

Columbia, Canada. These animals represent one of the most northerly, peripheral 

populations of freshwater turtles in North America. These animals exist under 

relatively harsh climatic conditions, but also inhabit an environment that regularly 

changes due to the fluctuating water levels caused by upstream and downstream 

hydroelectric facilities.  

 

Given the lack of historical data on this population, the overarching goal of my thesis 

was to provide an ecological baseline for an extreme-northern population of western 

painted turtles inhabiting a hydroelectric reservoir. My interest was in understanding 

how this population compares to other more northerly populations of the same or 

similar species, but also how and if the population was coping with the extreme and 

repeated fluctuations in water levels brought about by the reservoir. I therefore 

investigated the following: 

 

1) the demographics (age class, sex ratio, population numbers) of the turtles 

occupying a northern reservoir environment;  

 

2) nesting placement: were turtles nesting in the drawdown zone, and if so what 

was their nesting success and recruitment?;  

 

3) the potential effect(s) of fluctuating water levels on turtle behaviour; 

 

4) the movement patterns of turtles within the reservoir, and between it and 

neighbouring water bodies that are smaller and more stable; 
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5) the methods and techniques best used to observe and capture turtles within 

the Arrow Lakes Reservoir and similar environments; and 

 

6) if turtles were overwintering in the drawdown zone, and if so,  what were their 

hibernating tactics and levels of success. 

 

All the above aspects of the turtles’ ecology were highly intertwined, so I have 

chosen to present my work as a single chapter (Chapter 2). In Chapter 3, I 

summarize the major management and conservation concerns surrounding the 

turtles in relation to reservoir operations. Based on my work, I generate 

recommendations for (1) future research and monitoring (2) habitat enhancement 

tools, and (3) and other mitigation measures for reservoir operations. I also discuss 

current and future management issues that turtles face outside the boundaries of the 

reservoir. 

 

Because of the relevance of my work and planned long-term research on the 

Revelstoke turtle population, I provide a considerable amount of my ‘raw’ data in 

Appendices A-D. This material will provide future researchers with documented 

records of individual turtles and other important data. In Appendix E, I present a 

short report on work to determine if the ‘sightability’ of the turtles in the reservoir 

could be predicted through various environmental metrics. The goal of this work 

was, again, to provide other researchers with a possible tool for improving the 

detection and monitoring of turtle populations. 
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Implications for Conservation 
 

This work has added importance given the status of the western painted turtle in this 

region. Within the interior of B.C. this species is listed by the provincial government 

as “Special Concern” due to their sensitivity to (1) habitat loss and fragmentation, (2) 

loss of suitable nesting locations, and (3) susceptibility to road mortality. At the 

federal level, the turtle is also ranked as “Special Concern” under Schedule 1, 

affording the species protection, and the development and implementation of 

recovery measures. Concern over this status of the animal is due to at least five 

processes:  

 

 increased urbanization of natural areas;  

 infilling of wetlands; 

 increased resource extraction and management;  

 increased recreation in natural habitats; and  

 the introduction of invasive species (COSEWIC 2006).  

 

The Columbia Water Use Plan was developed by a multi-stakeholder consultative 

process to inform best operating procedures for BC Hydro’s hydroelectric 

operations; the procedures are intended to balance environmental and 

cultural/heritage values, recreation, power generation, navigation, and flood control. 

As part of determining the environmental values and potential effects of the 

hydroelectric operations on various species, a long-term monitoring program 

(Wildlife Effectiveness Monitoring of Re-vegetation and Wildlife Physical Works) was 

developed. Through this process the western painted turtle was identified as a 

species of interest under the Columbia Water Use Plan, because it is the only native 

freshwater turtle found in B.C., local interest was high, and it has ‘at risk’ status. BC 

Hydro is committed to the ongoing monitoring and habitat enhancement of species 

that are potentially influenced by their operations, and as such, this study was 

initiated as a means to provide preliminary data and directions for future action.
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CHAPTER TWO 
 

THE ECOLOGY OF WESTERN PAINTED TURTLES (CHRYSEMYS PICTA 
BELLII) IN A NORTHERN CANADIAN RESERVOIR TURTLE 

 

Introduction 
 

Herpetofauna in northern areas of the globe face a combination of environmental 

and human-induced stressors. Because of strong seasonal patterns, these animals 

generally have limited time to feed, grow, and reproduce, resulting in trade-offs 

between growth and reproduction (St. Clair et al., 1994). With increased human 

development and population growth, the effects of these northern environmental 

stressors are now coupled with anthropogenic effects, including the loss and 

degradation of habitat, introduced species and pollution, as well as the potential 

effects of climate change (Gibbons et al., 2000; Turtle Conservation Fund 2002). 

Clearly, the persistence of these northern populations is dependent not only on the 

adaptive resiliency of the animals, but also our ability to recognize and effectively 

mitigate natural, anthropogenic, and cumulative effects on the animals. 

 

One area of human activity that is contributing to the pressure on northern 

herpetofauna is energy production. Many natural areas of the north contain current 

or potential energy sources, which create conservation challenges for many species, 

not just reptiles (Cuddihy et al., 2005; Prowse et al., 2009). ‘Green’ or renewable 

sources of energy such as, wind, solar, geothermal, and hydro power are generally 

considered favourable because of limited environmental impacts. Even with these 

types of energy production, there can be unforeseen consequences (Abbasi and 

Abbasi 2000). For example, research has shown that animals are impacted though 

habitat loss and alteration during construction of facilities (Walter et al., 2006), that 

birds and bats are impacted through collisions with wind turbines (Hoover and 

Morrison 2005: Mabee et al., 2006; Kunz et al., 2007), and that changes in water 

levels will alter available habitat for birds, amphibians and reptiles found in or around 

reservoirs (CBA 2011; Boyle 2012). 
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In general, hydroelectric power is considered a relatively benign form of energy 

production compared to the burning of fossil fuels. However, reservoirs created by 

water impoundment for power generation may create unnatural habitat for many 

animals. The blockage or alteration of water flow, the creation of artificial water 

bodies, and the ongoing operation of the reservoirs all have been linked to impacts 

on wildlife. These impacts have been well studied in fish (Crivelli et al., 1995; 

Antonio et al., 2007; Bodaly et al., 2007) although other species have also been 

shown to be affected (Crivelli et al., 1995; Reese and Welsh 1998; Boyle 2012). 

Hydroelectric operations and impoundments have been found to increase mercury 

concentrations in fish (Bodaly et al., 2007), alter flow patterns, impact the 

biodiversity of an area, block fish migration routes by creating obstacles (Rosenberg 

et al., 1997; Antonio et al., 2007), eliminate certain habitat types required by certain 

species or age classes, (Reese 1996; Reese and Welsh 1998) and alter food webs 

(Tuker et al., 2012), all which may have significant impacts on aquatic or semi-

aquatic animals, for example fish, turtles, and amphibians. Even terrestrial animals 

that forage in riparian habitat may be forced to alter their hunting patterns in 

response to the establishment of reservoirs, as well as the changing water levels 

associated with the ongoing operation of these structures (Boyle 2012). 

 

Turtles may be particularly susceptible to the effects of reservoirs, especially in 

northern climates. Changing water levels due to reservoir operations may drastically 

alter suitable habitat for aquatic or semi-aquatic turtles, or it may create habitat, 

varying spatially and temporally. These alterations in habitat may affect home range 

size and turtle behaviour in an already-short active season. Increased water levels 

may impact recruitment by eliminating shallow shorelines that neonate and juveniles 

turtles require (Reese 1996; Reese and Welsh 1998) or inundate nesting areas. 

These impacts to recruitment or the nesting areas may vary depending on the 

season, or if multiple clutches are laid during a year, each clutch may be impacted 

differently (Congdon and Tinkle 1982). Water levels can fluctuate on any given year 

or day, depending on dam operations, seasonal precipitation, and the demand for 

energy resulting in varying degrees of influence, causing additional complexity to the 
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impacts and management of the dam’s operations. Furthermore, these influences 

from reservoir operations may be compounded by living in a northern climate, limited 

available habitat, and suitable nesting and overwintering sites. Overwintering 

locations may freeze and/or be scraped by ice shifting in response to changes in 

water levels. Changes in winter would be exacerbated by the fact the animals may 

be experiencing decreased oxygen levels and increased levels of lactic acid created 

during hibernation (St. Clair and Gregory 1990). All told, these processes may have 

a significant impact on turtle populations in reservoirs.  

 

The western painted turtle (Chrysemys picta belli) is a species that extends further 

north than any other turtle species in the western hemisphere (Ultsch et al., 1985). 

Painted turtles living at their northern range and associated with reservoirs face the 

combined effects of climate and the reservoir environment. In addition to those listed 

above, these potential effects could include changes (spatial and temporal) to the 

temperature of the water body and the potential loss of basking sites as water levels 

fluctuate. Understanding the ecology of northern populations of painted turtles (and 

other northern species) within reservoir environments is thus important for ensuring 

the persistence of these animals, particularly if mitigation techniques are needed 

(Reese 1996; Reese and Welsh 1998).  

 

I studied the ecology of the western painted turtle (C. p. bellii) in a hydroelectric 

reservoir near the extreme northern limit of the species’ range (approx. 51.01 °N Lat) 

within the interior mountains of British Columbia (B.C.), Canada. Although turtles 

have been observed in the reservoir for a number of decades, no formal study has 

been conducted to determine how or if this extreme northern population is likely to 

persist under the conditions created by the artificial water body. Therefore, the goal 

of this research was to (1) conduct a broad pilot study on the ecology of these 

animals in order to determine basic demographics and distribution of the population; 

(2) identify whether overwinter and nesting locations maybe subject to freezing or 

inundation, (3) determine the effects of fluctuating water levels on turtle behaviour 

and habitat space use and, (4) provide a preliminary assessment on whether or not 
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the population is self-sustaining, or whether the viability of the population is 

dependent on immigration from neighbouring populations of turtles. 

 

Methods 
 

Study Area 

 

This study was conducted during the years 2010 and 2011 in the Revelstoke Reach 

area (approx. 40 km long) of the Upper Arrow Lakes Reservoir, near the town of 

Revelstoke, B.C. (51.01°N, 118.21°W; 420 - 480 m.). The Monashee and Selkirk 

Mountain ranges and the amount of precipitation in this area combine to create one 

of the few inland temperate rain forests in the world (Goward and Spribilee 2005; 

Sanborn et al., 2006), approximately 560 km from the Pacific Ocean. Western red-

cedar (Thuja plicata), western hemlock, (Tsuga heterophylla) and Interior Douglas-fir 

(Pseudotsuga menziesii) are the predominant tree species in the lower parts of the 

valleys (Braumandl and Curran 1992). Annual precipitation is approximately 94.6 cm 

in Revelstoke, a large part of this precipitation is in the form of snowfall (the Mt. 

Fidelity weather station, approximately 47 km northeast from the Revelstoke town 

site, records the highest annual snowfall in Canada at 1471 cm; Environment 

Canada 2012; Osborn 2013). Daily average temperatures above 0°C occur from 

early March through to early October and an average daily temperature during this 

time period of 12°C (Environment Canada 2012). 

 

The Upper Arrow Lakes Reservoir is part of an extensive series of hydroelectric 

developments occurring along the Columbia River in B.C. and the American states 

of Washington and Oregon. Created in the 1960s by the construction of the Hugh 

Keenleyside Dam, the water levels in the reservoir are now, in turn, controlled 

primarily through the release of water by the upstream Revelstoke Dam (constructed 

in 1984) and the downstream Hugh Keenleyside Dam. The operations of these 

reservoirs fall under the responsibility of British Columbia Hydro (BC Hydro), which 

is a crown corporation that reports to the Government of B.C. The current water 
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licence allows for a 20 m fluctuation in water levels (from 420 – 440.1 MASL) within 

the “drawdown zone” (the area between the high and low water mark). Annual 

reservoir levels vary both in time and by the amount in which they fluctuate (BC 

Hydro 2005). During my study years, water levels were slightly above the 10 year 

average, specifically during the spring and winter (Chapter 1; Figure 1-4). Water 

levels generally increased during the spring (May), reaching full-pool (highest water 

levels) during the months of July and August, and would decrease starting in 

September or October. The lowest water levels are in March and April. 

 

The majority of this research focused on two specific sites, Airport Marsh (AP) and 

Montana Slough (MS; Figure 2-1) within the Revelstoke Reach. These sites were 

identified by earlier surveys (pers. observ; Hawkes and Tuttle 2010) as supporting 

the two main aggregations of turtles in the reservoir. Additional visual surveys of all 

areas of Revelstoke at the outset of this project detected only the occasional 

individual turtle outside of the two main sites. Habitat outside of these two sites was 

more exposed and often part of the main channel of the Columbia River, resulting in 

faster moving water, cooler temperatures and little to no emergent vegetation for 

foraging or shelter.  

 

The two main study sites occurred along the east side of the reservoir, which owing 

to the orientation of the valley receives the most direct sunlight. The first site, Airport 

Marsh, (AP, 438 MASL) is relatively sheltered from the reservoir by an airport 

runway strip that runs out into the reservoir; this site floods at a slower rate when the 

water level is raised and it has a larger area to flood in comparison to the other site. 

The second site, Montana Slough, (MS, 436 AMSL) is located approximately 2.5 km 

(straight-line distance) downstream of AP. During high water, the only land in the MS 

site that remains above water, aside from the shoreline, is a large matt of floating 

vegetation that, essentially creates an island (Fig. 2.1). Aside from the two main 

study sites in the reservoir, two adjacent upland sites were identified to support turtle 

populations, namely Williamson Lake (WL) and Turtle Pond (TP). The former is a 

recreational lake approximately 460 m from AP, and it is directly adjacent to a 
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campground. Turtle Pond is approximately 360 m from AP and 550 m south of 

Williamson Lake. This pond is located along a residential street and is boarded by 

private property.  

 

Population Assessment 

 

I conducted a mark-recapture study on the turtles from April 2010 to October 2011. 

Hand captures, basking traps (2010 and 2011), and hoop traps (2011) were the 

three methods I used to capture turtles. Hoop traps were introduced in 2011 in an 

effort to determine if a highly-skewed female sex bias in my 2010 sample (see 

Results) could be attributed to trapping methods (Ream and Ream 1966; Gamble 

2006). Basking traps were set on warm sunny days throughout April to August 

where turtles were likely to be basking. Hoop traps were set at the beginning of a 

five day shift, checked every 12 hours and closed the morning of the fifth day, 

throughout the entire active season (April to October). Turtles were also caught 

using nets from in the boat or on foot while wading through shallow water and 

emergent and submergent vegetation.  

 

Each captured turtle was permanently marked by notching the marginal scutes of 

the shell with a triangle file, allowing for individual identification of turtles in the mark-

recapture study (Cagle 1939; RISC 1998). Neonates and some juveniles were not 

marked, as their shells are soft and not fully ossified, and notching may cause 

deformities or become lost as they grow (Cagle 1939). In addition, morphometric 

data was collected on each turtle captured. Animals were weighed using a hand-

held Pesola® spring scale (nearest 0.1 g). The straight line length and width of the 

plastron (bottom of shell) and carapace (top of shell) were measured (Grayson and 

Dorcas 2004). The width of the carapace was measured from the seventh scute on 

either side of the turtle (pers. comm. Govindarajulu). The average sizes of the turtles 

were reported as mean plastron length rather than mass, to account for changes in 

the latter through the retention or loss of eggs, and/or water (Gibbons 1967; 

Macartney and Gregory 1985).  
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Figure 2-1 Map showing study sites (Airport Marsh (AP) and Montana Slough (MS), 
Williamson Lake (WL), and Turtle Pond (TP), and nesting locations (N1-N6) within 
the Upper Arrow Lakes Reservoir, Revelstoke Reach B.C.  
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The sex of each turtle was determined using secondary sexual characteristics and 

the relative positioning of the cloaca (Macartney and Gregory 1985; Matsuda et al., 

2006), and placed in an age class category (Adult, Juvenile, Neonate). Smaller 

turtles that could not be sexed were labelled as juveniles. The identification of 

neonates and juveniles as either male or female is a limitation of many turtle studies 

because to determine sex dissection is required (Vogt and Bull 1984).  

 

Movements Behaviour and Habitat 

 

Forty-one captured turtles were outfitted with VHF radio transmitters (17 turtles in 

2010 and 24 turtles in 2011; Appendix A). I used stainless steel wire to secure 

transmitters (SI-2F or AI-2F Holohil Systems Ltd. Transmitter, Ontario Canada) to 

the posterior of the carapace. Small holes were drilled along the marginal scutes 

(usually scutes nine and eleven on the left side of the carapace to minimize 

interference with breeding) using a cordless power drill (Grayson and Dorcas 2004). 

Epoxy putty was used to streamline the edges of the attachment to prevent snagging 

on vegetation (Edge et al., 2009; pers. comm. Litzgus). The entire transmitter 

package did not exceed 5% of body weight (CCAC 2003). 

 

I located each turtle randomly a minimum of once per week from the time they were 

outfitted with a transmitter through to October, after a separate study by myself 

(Appendix E) found that time of day did not have a significant effect of whether a 

turtle was detected or not. A subsample of turtles (four turtles during the 2010/2011 

season and 16 turtles during the 211/2012 season) from both sites was selected to 

retain radio transmitters over the winter months and these turtles were tracked 

periodically from November to March and then again more extensively beginning in 

April. I used a Lotek Biotrack wide-band radio receiver (138-174 MHz; Lotek 

Wireless Fish and Wildlife Monitoring) and a three-element Yagi antenna to track the 

animals.  
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Study sites were surveyed once per week in efforts to determine distribution, and 

detectability of the turtles between sites. Habitat information was collected at the 

point where any turtle was located through telemetry, visual searches, or incidental 

observations. This assessment consisted of a location using the Universal 

Transverse Mercator (UTM: marked with Garmin® GPSmap76CSX; ≤ 3m), time, 

date, water depth, water temperature (taken approximately 10 cm below the surface 

of the water), air temperature at turtle location, precipitation, wind, cloud cover, 

distance to water/shore, and activity of the turtle. The activities of all turtles sighted 

or captured were recorded as basking, walking, mating, nesting, stationary, 

swimming or unknown. In addition, the type of substrate being used by any turtle 

found basking was recorded (Table 2-1; Marchand and Litvaitis 2004).  

 

Other Data Collection 

 

I conducted turtle nesting surveys (daily from mid-May to mid-July) and neonate 

emergent surveys (every other day from April to May) by walking known nesting 

sites and areas that contained suitable nesting substrates. Emergent surveys 

consisted of searching for neonates that had left their natal nest, as evident by 

emergent holes in the nesting substrate (small holes in the soil with the approximate 

diameter of 5 cm). 
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Table 2-1 Description of substrate categories for locations where turtles were 
detected basking. 

 

Substrate Description 

Emergent Vegetation Vegetation that is above the surface of the water 

Floating and 

Subsurface Vegetation 

Vegetation floating on the surface of the water or just 

below the surface 

Gravel A collection of small unconsolidated rocks (2mm to 

4mm) 

Mud Mixture of soil, organic debris and water 

Water Solely water with minimal vegetation 

Wood Large or small woody surface 
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Data Analysis  

 

Population Size Estimation 

 

To estimate population size, I combined turtle capture records within each year into 

two capture periods (2010 and 2011 respectively), and used the Lincoln-Petersen 

method following Pollock (1991) and Carriére, (2007); i.e.:  

 

Estimate of N= ((n1+ 1) (n2 + 1) / (m + 1)) -1), where  

n1 = total number of animals captured in first season;  

n2 = total number of animals captured in second season; and  

m = the number of animals re-captured in the second season that were 

originally marked in the first.  

 

I omitted data from neonates found on shore or in the water from this analysis, due 

to the poor recapture rate for these animals (Reese 1996). Multiple methods of 

trapping and hand capture of turtles were used to help satisfy the assumption of 

equal catchabiltiy within the population of juveniles and adults. 

 

Spatial habitat use patterns 

 

The individual space used by each telemetered turtle(excluding nesting movements 

by females) was measured with the 100% minimum convex polygon (MCP) method 

(“mcp” function in library “adehabitat” in R - Calenge 2006). Although MCP can 

overestimate the space used by animals (Row and Blouin-Demer 2006), I chose to 

use this method because it is a simple way of describing the area of occupation by 

the turtles based on water levels. In addition, this method provides comparison with 

past research, and does not depend on an underlying statistical distribution such as 

normality (Litzgus and Mousseau 2004; Row and Blouin-Demer 2006). Furthermore, 

most herpetofauna tend to use certain locations multiple times and generally do not 

move far, with the exception of natal dispersal, nesting, and overwintering 
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movements. This allows for MCP to accurately represent home range or space use 

for most herpetofauna (Row and Blouin-Demer 2006). Hereafter I use the term 

‘habitat space’ to refer to the MCP that encompasses all locations detected for each 

telemetered turtle over the course of an active season (April to October).  

 

I calculated MCP for 11 turtles in 2010 and 19 in 2011, for a total sample of 30, with 

four individuals being tracked in both years. Data between years were combined to 

provide a larger sample size and turtles with less than five locations were omitted 

from the MCP analysis. Data points were considered independent from one another 

if separated by a 24 hour period (Compton et al., 2002).  

 

Comparisons of spatial use by adult turtles were made between and within sites 

during the active season, and between male and females using the Mann Whitney 

U-test because (i) there were multiple comparisons, (ii) the data did not follow a 

normal distribution, and (iii) the sample size between groups was unequal. In 

addition, spatial use by turtles was compared between low water (April to June 11) 

and high water (June 12 to September 30, full-pool) time periods. Male and female 

comparisons between high and low water could not be done because of low sample 

sizes for males during low water.  

 

A description of habitat type was presented based on the percentage of turtle 

detections and the top three dominant species of vegetation within on a 5.64 m 

radius plot (100m2; a standard used in forestry inventory method to measure plant 

diversity; Province of British Columbia 1999). The substrate that each turtle was 

found basking on was recorded and a comparison between the frequencies of use of 

each substrate was made in relation to each site.  

 

Influence of water level fluctuation and season on turtle behaviour 

 

To examine the effects of water level fluctuations on turtle behaviour, I used linear 

mixed-effects and binary generalized mixed-effects modeling. Mixed-effects models 
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include both fixed and random variables in their analysis, thus accommodating for 

repeated measures, statistical non-independence and unbalanced study designs 

(Hansen and Jones 2009). Restricted maximum likelihood estimates (REML) were 

used to determine the model structure for random effects, and maximum likelihood 

(ML) estimates were used for the fixed effects structure of the model (Hansen and 

Jones 2009; Zuur et al., 2009). Heterogeneity between groups and temporal 

correlations were accounted for in the random effects of each model using the 

functions “lme” and gls”from the library “nlme” (Venables and Ripley 2002) and 

“glmer” from the library “lme4” (Bates et al., 2012) in Program R; following the 

protocol set out by Zuur et al., (2009). 

 

I considered three basic measurements of turtle behaviour, namely the average daily 

distance moved (ADD), distance to shore (DTS), and basking. Potential explanatory 

variables that I entered into the models were water level (m), water temperature (Cº) 

and Season (Table 2-2). To account for repeated measures on the same turtle, turtle 

identity (ID) was used as a random effect in all models. The behaviour response 

variables ADD and DTS were log transformed to help meet assumptions of normality 

within the models (Roulin and Bersier 2007). Due to a scarcity of adult males and 

juveniles (see Results), sex and age were not incorporated within the models, and 

data were pooled over both years to increase sample size. 

 

Statistical analyses and graphing were performed using R version 2.14.2 (R 

Development Core Team 2003). An alpha value of α = 0.05 was used to guide 

interpretation of the results.  
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Table 2-2 Response, fixed and random variables associated with turtle behaviours 

and mixed effects models.  

 

Abbreviated Variables Description 

Response Variables 

ADD Average daily distance moved (m). Standardized by 

dividing the distance moved by the number of days 

since the last location 

DTS Distance to the closest shore (m) 

Basking Turtle detected basking or not. Binary variable: 0=not 

basking, 1=basking 

Fixed Variables 

H2OTemp Water temperature (°C) where the turtle was located, 

approximately 10 cm below the surface of the water 

Season Periods of time defined around nesting: Pre-Nesting 

season; April 01 to May 11, Nesting; May 11- July 10, 

Post-Nesting; July 11 – September 30. 

Level Average water levels based on elevations (m) 

recorded on the day of detection 

Random Variables 

ID Individual turtle identification 
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Prior to the construction of the mixed-effect models, I first checked for correlation 

between the potential explanatory variables using Spearman rank correlation 

matrices. I omitted the variable less likely to have biological relevance if two 

variables were strongly correlated (R> = 0.75 or R< = -0.75; Reese 1996). However, 

if the correlated pair of variables included a categorical variable, I checked if the 

correlation was occurring within only one of the categories (Level) of the variable in 

question. If so, both variables were retained for the modelling exercise. 

 

Stepwise comparisons and Akaike’s Information Criterion (ΔAICc) were used to 

determine the top ranking models (Zuur et al., 2009). The model with the lowest AIC 

was considered the top ranked model and was used as the baseline model to 

calculate ΔAICc for model comparisons. Models with a difference of less than 2 in 

the AIC scores were considered competing models; in this case, the model with the 

fewest variables was considered the most parsimonious model and ranked higher 

(Burnham and Anderson 2002 & 2004).  

 

The amount of variation explained by the linear mixed effect models was determined 

using Pseudo R2 values, and a confusion matrix was used to determine the 

predictive power of the binary mixed effects model for turtle basking behaviour 

(Kohavi and Provost 1998; Zuur et al., 2009). In the latter case, I looked for the 

model that generated equal predictability for both binary categories (i.e. not basking 

versus basking) (Pearce and Ferrier 2000; Boyce at al. 2002). Typically, threshold 

values for assessing the predictive power of binary logistic regression models (the 

confusion matrix) are arbitrarily set at is 0.5; however, because my data set was 

biased towards non-basking events, I considered basking to be a ‘rare’ event and I 

halved the default threshold value 0.05 twice to obtain a threshold value of 0.125.  
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Results  
 

Population Assessment 

 

A total of 198 individual turtles (81 adults female, 13 adult male turtles, 32 juveniles, 

72 neonates) were captured in the reservoir during the 2010 and 2011 field seasons. 

This number includes a large proportion (35%) of neonates that were captured as 

they emerged from nests which were not included in the Capture-mark-recapture 

estimate of population size. Adult females were over-represented, both in 2010 and 

2011, while neonates appeared to be over-represented in 2010 (Figure 2-2). My 

mark-recapture data provided a population estimate of 242 turtles (SE = ± 42.1, 95% 

CI = 160, 325) (excluding neonates) in the study area. This represented a density 

estimate of approximately 2.2 turtles/ha (the AP and MS sites combined) before high 

water (June) and a density of 2.0 turtles/ha during the highest water levels in late 

July. 

 

During the first year of the study, the combination of basking traps and hand 

captures produced a sample of 3 ♂♂ and 51 ♀♀ adults, a ratio of 1:17. In the 

second year of the study, when hoop traps were used in conjunction with basking 

traps, a sample of 11 ♂♂ and 30 ♀♀ adult turtles were produced, for a ratio of 1: 3. 

Thus, the overall sex ratio of all adult turtles captured during the two-year study was 

14:81, which was significantly different from a 1:1 ratio (χ2 = 49.2, df = 1, p-value 

<0.001). During 2011, 17 turtles were captured using hoop traps, with a sex ratio of 

7 ♂♂: 10 ♀♀, or 1:1.4 (not significantly different from a 1:1 ratio: χ2 = 0.53, df = 1; P 

= 0.46). However, the hand-capture sample in this year was still strongly biased 

towards females (4 ♂♂: 20 ♀♀, or 1:5; χ2= 10.7, df = 1; P <0.001).  

 

  



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Straight-line plastron lengths (cm) of turtles residing in the Upper Arrow 
Lakes Reservoir, B.C. during the 2010 and 2011 field seasons. * Ninety-nine percent 
of all neonates were captured at nesting sites and not within the reservoir.  
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Nesting Locations and Threats 

 

Six nesting sites were identified. All sites were anthropogenic in origin, and all were 

above the high-water mark (Figure 2-1; N1-N6). Two of these six sites contained the 

majority of nests (N1 ≥ 30 nests and N2 ≥ 20 nests) where at least one neonate from 

each nest detected emerged. Both of these sites were in proximity to the AP study 

site, and adult females demonstrated nest site fidelity as three individuals were 

detected in both years using the same nesting sites. Only one clutch per female per 

year was detected. No similar communal nest sites were detected near the MS study 

site; in fact, only one nest was confirmed at this site. Vegetation encroachment at 

the main nesting site (N1) was occurring, as I detected root penetration into multiple 

nests, causing morality to the eggs and neonates.  

 

No movement of adult females was detected from the MS site to the AP site related 

to nesting and, the maximum distance from the shoreline to all detected nests was 

approximately 80 m.  

 

A nesting site was suspected at the south end of the MS site across a road. This 

potential nesting site may experience high mortality rates because during late spring 

early summers when turtles are nesting water levels are generally higher than early 

spring when neonates are emerging from their nests and moving towards the water. 

The distance from this particular nesting site to the shoreline can fluctuate between 

80 to 400 metres. At lower water levels, neonates will face a greater distance 

between them and the shoreline, and thus may face increased risk of predation, 

desiccation, terrain, vehicles, and disorientation.  

 

Overwintering 

 

Four turtles carried transmitters during the winter of 2010/2011, and 16 were 

similarly tracked in the winter of 2011/2012. This resulted in 12 turtles being tracked 

overwinter at the MS site and eight at the AP site. All turtles, except one from AP, 
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overwintered at the same study site where they were captured. Turtles at the AP site 

did not use a communal hibernation site. Rather, turtles were dispersed over the 

winter (nearest-neighbour distance between turtles: 187 m; Appendix D - Figure D-

2). These sites occurred in various habitat types (pond, and open water next to 

areas of emergent and submergent vegetation, mainly bulrush) that were 

characterized by water depths deeper than a metre and in muddy silt substrates. 

 

In MS, a small pond of water encased by the floating vegetation island was used as 

a communal hibernaculum by all but one of the turtles (n=13) monitored in that site 

over both years. The one exception occurred during the 2010/2011 season, when a 

lone female overwintered outside of the communal hibernacula, but then used the 

communal location in the subsequent winter. The attraction to this pond is not clear, 

although it appeared to be sheltered from the main channel by the floating 

vegetation when water levels were high. When water levels were low (particularly in 

the winter) it still afforded deep water (>2 m; measured at the centre of the pond) 

with a muddy bottom that turtles appeared to bury into, as suggested by telemetry 

and visual observations when the bottom of the pond could been seen. The shortest 

distance needed to reach the pond from the main channel along the shoreline was 

approximate 5 m. 

 

All overwintering sites had 100% snow cover from November through to February 

during both years of the study. This suggests ice cover was present, although I could 

only verify this during January and February when the ice was thick enough to allow 

tracking off shore.  

 

Hibernating locations for each turtle were located in the same area that the turtle 

spent the majority of their time during the active season (habitat space use; see 

section below; MCP). One exception to this rule was one telemetered animal that left 

the reservoir (AP site) and travelled overland (September 2010) to one of the upland 

water bodies (Williamson Lake) where it overwintered (a minimum of 400 m straight-
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line distance). This animal successfully overwintered there and returned to the 

reservoir the following spring (June 2011).  

 

Mortality  

 

I documented 12 cases of turtle mortality (three in 2010, nine in 2011) within the 

reservoir during the course of my study. How these animals died is unclear, with the 

exception of three that were killed by vehicles while crossing the road. The lack of 

signs of predation and the discovery of their carcasses atop of vegetation, shortly 

after spring emergence, suggest at least some of these turtles may have emerged 

from hibernation and died shortly thereafter. The survival rate of the turtles within the 

reservoir has yet to be determined.  

 

Habitat Space and Turtle Movements 

 

On average, individual turtles occupied 72.0 ha (SE = ±16.0, n = 33) of habitat 

space. No differences in space use were detected between low (n=16) and high 

water (n=33) within the study area (U=345, P=0.9), between sites (MS; low (n=9), 

high (n=15); U=45.5P=00.20; AP; low (n=13), high (n=18) U=108, P =0.7) or 

between gender (8 ♂♂ : 24 ♀♀; U=84, P =0.6).  

 

The majority of movements detected through telemetry tended to be localized within 

the study site that each turtle was first captured with very little movements detected 

between the upland sites and the reservoir. The ADD moved by turtles outfitted with 

transmitters was 59 m (SE= ± 4.1, n= 620). No difference in this metric was detected 

between years (U=47113, P=0.68, 2010 n= 165, 2011 n=414) or between sites (U = 

84229, P = 0.15, AP n=287, MS n=280) when the years were combined. However a 

difference in ADD was detected between sites within each year (2010; U= 6887, 

P=0.03: 2011; U=43261, P=0.001), when turtles moved on average more per day at 

the MS site (x�= 101.2, n=65) than the turtles at the AP site (x�=59.7, SE=±23.2, 
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n=94) during 2010, while turtles moved on average more at the AP site (x�=70.5, 

SE=±7.3, n=193) then the MS site during 2011 (x�=50.0, SE=± 5.9, n=215).  

 

Of the two juvenile animals that were outfitted with transmitters, the ADD (x� = 

21.62, SE=±6.0, n = 21) that these turtles moved was significantly shorter than that 

made by adult turtles (x�=64.59, SE=±7.2, n=287) during the same time period (U = 

40317, P= 0.046: Appendix B; Figure B-1 and B-2). Conversely, ADDs demonstrated 

by adult males (x�=68.6, SE=±8.5, n=129) and females (x�=63.5, SE=±6.9, n=445) 

were not significantly different from one another (U = 125230.5, P = 0.10).  

 

Turtle Behaviour and Environmental Effects 

 

Mixed effects modelling indicated no significant effects of changing water levels 

(Level) on ADD, DTS, and Basking (at α = 0.05). Conversely, ADD appeared to be 

influenced by H2OTemp, Season (a categorical variable), and their interaction. Out 

of the numerous candidate models, the top model accounted for autocorrelation in 

time between the locations, and unequal variances between the variable Season 

(Table 2-3).  

 

The top ranked model illustrated that ADD increased as H2OTemp increased prior to 

the nesting Season. This association displayed a somewhat positive exponential 

relationship in that turtle movements increased as the water temperatures increased, 

partially when the water temperature reached 15 °C and higher (Figure 2-3); 

however, the predictive power of the model was very low (Pseudo R2 = 20%). 

 

My attempts to model the DTS behaviour showed that both H2OTemp and Season 

were important explanatory variables, whereas autocorrelation and variance within 

the seasons had no significance and were subsequently dropped from the models 

(Table 2-4). As shown in Table 2-4, two models were virtually identical in AIC 

scores. Both models included H2OTemp and Season, while also accounting for the 

repeated measures on each turtle (ID). The only difference in these two models was 
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the inclusion of an interaction effect between H2OTemp and Season, and the 

change in AIC score due to this was extremely small; therefore, the model with the 

least number of parameters was deemed most parsimonious. The top ranked model 

revealed water temperature and season accounted for only 36% of the variation 

(Pseudo R2) with no significant relationship found within these variables (Figure 2-4). 

 

 

 

  



51 
 

 

 

 

 

 

Table 2-3 Summary of AIC and ΔAICc values for the top five candidate models 
assessing the influence of H2OTemp, Level (MASL), and Season (pre-nesting, 
nesting, and post-nesting) on the average daily distance (m) moved by turtles within 
the Arrow Lakes Reservoir, British Columbia, Canada. Repeated measures on 
individual animals were accounted for using the ID term as well as autocorrelation 
between the locations and variance within season.  

 

Explanatory Variables AIC ΔAICc

Season + H2Otemp + Season* H2Otemp + ID 947.26 0.00 

Season + H2OTemp + ID 952.96 5.70 

Level + Season + H2Otemp + Level* Season * 

H2OTemp + ID 
969.64 22.38 

H2OTemp + Season + ID 973.26 26.00 

H2OTemp + Season + ID 973.53 26.27 

Level+ Season + H2OTemp + ID 974.89 27.63 

Level+ Season + H2OTemp 995.66 48.39 

Italics indicates top model.  

* Indicates an interaction between the two variables. 
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Figure 2-3 Average daily distances (m) recorded for telemetered turtles during three 
periods of the active season, shown as a function of water temperature (open circle 
data points). The solid line depicts the predictive relationship determined through 
mixed-effects modelling. Only during the pre-nesting season (top graph) was a 
significant relationship detected.   



53 
 

 

 

 

 

 

Table 2-4 Summary of AIC, and ΔAICc of the top five candidate models assessing 
the influence of H2OTemp and Season on DTS by turtles within the Revelstoke 
Reach, Arrow Lakes Reservoir British Columbia, Canada. Repeated measures were 
accounted for using the term ID.  

 

Explanatory Variables AIC ΔAICc 

Season+ H2OTemp + Season * H2OTemp + ID 658.74 0.00 

H2OTemp + Season + ID 658.82 0.08 

Level + Season + H2OTemp + ID 660.78 2.05 

Level + H2OTemp + ID 667.23 8.49 

Level + SEASON + H2OTemp + Level *Season* 

H2OTemp + ID 
667.54 8.81 

Italics indicates top model.  

* Indicates an interaction between the two variables. 
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Figure 2-4 Distance to shore (m) recorded for telemetered turtles during three 
periods of the active season, shown as a function of water temperature (open circle 
data points). The solid line depicts the predictive relationship determined through 
mixed-effects modelling no significant relationship was detected.  
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Modeling basking behaviour as a binary variable revealed Season to be the only 

significant explanatory variable. The model correctly predicted 86% of the 

observations (482/559); however, these predictions were bias towards correctly 

predicating non-basking events at (80% observations) which may be the result of an 

over-representation of turtle observations during the nesting and post- nesting 

seasons when water temperatures were higher than the pre-nesting season.  

 

Habitat  

 

A difference in habitat between the two main sites (AP and MS) and the rest of the 

reservoir was apparent based on the amount of available habitat (MS= 28.3 ha, 

AP=81 ha), habitat type, the dominate vegetation types observed at each site, and 

changes in the landscape as water levels fluctuated. Within the AP site, 67% of turtle 

detections were found within the emergent vegetation that included bulrush 

(Schoenoplectus tabernaemontani), common cattail (Typha latifolia), pondweed 

(Potamogeton spp), milfoil (Myriophyllum spp) and reed canary grass (Phalaris 

arundinacea). In comparison, the majority of turtles detected at the MS (77.2%) site 

were on or near the shoreline of the floating vegetation matt dominated by moss 

(Sphagnum spp.), sedge (Carex spp.), reed canary grass, and willows (Salix spp.). 

In addition, the fen habitat of the MS site becomes connected to the main channel of 

the Columbia River during high water and likely experiences a greater influx of 

colder, faster moving water, where the AP site is relatively sheltered from the 

reservoir by the earth-filled airport runway. The AP site also floods at a slower rate 

(having a larger area to flood) and potentially provided superior habitat than the rest 

of the reservoir. This may at least partially explain why considerably more individual 

adult turtles were detected during this study in the AP site (n=171) than the MS site 

(27). 

 

The frequency of basking substrates used by turtles in the reservoir changed with 

the water level. More turtles were detected basking on wooden substrates as water 

levels increased (Figure 2-5).   
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Figure 2-5 Use of different basking substrates by turtles in Revelstoke Reach in 
relation to changing water levels.   
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Discussion  

 

This study is the first to focus on the ecology of a northern Canadian turtle 

population in an environment that experiences dynamic changes in water levels. The 

results of this study suggest that the turtles occupying the reservoir are able to cope 

with the local northern environment in a fashion similar to that reported for 

populations occupying more natural habitat. Overall, extremely little movement of the 

turtles occurred between the two primary study sites in the reservoir, and even less 

between the reservoir and the unknown upland areas based on my ability to detect 

the movement of turtles within the reservoir. Turtles remained within the reservoir to 

hibernate, with the exception of one, and were found using both scattered locations 

and a communal location. Changes in the water level of the reservoir did not appear 

to exert a significant effect on the turtle behaviours measured in this paper, but 

timing in relation to the nesting season and water temperature did seem to play a 

role. Changes in water levels also appear to influence the substrates that are used 

by turtles. The limitations of this study notwithstanding, the plastic behaviour of this 

animal appears to allow turtles to cope reasonably well with the anthropogenic 

reservoir environment, although the fortuitous physical structure of the two habitat 

‘pockets’ may be responsible to a large extent in allowing the turtles to persist in the 

reservoir.  

 

Population Assessment 

 

The density of the reservoir population appears to be comparable to that reported for 

other populations of northern painted turtles within British Columbia (Kikkomun 

Creek Provincial Park; populations in six lakes ranged from 0.9 – 7.2 turtles/ha; 

Macartney and Gregory 1985), but comparative data with other turtle populations in 

fluctuating water bodies are scant. A study conducted in Ontario (Yagi and Litzgus 

2012) investigated the effects of natural flooding (caused by beavers) on a spotted 

turtle (Clemmys guttata) population, and reported a population density of 1.6 

turtles/ha prior to the flooding and 0.7 turtles/ha post flooding. It appears that turtle 



58 
 

populations and densities can fluctuate dramatically within natural systems and 

these numbers may be affected by size of the habitat, and the detectability of the 

turtles. However; at the time of this study it appears that the density of the Arrow 

Lakes Reservoir population is comparable to that of other northern turtle populations 

that also deal with natural fluctuations in water levels. However, this density is low in 

comparison to populations of the same species in more southern latitudes where 

turtle densities can reach or exceed 100 turtles/ha (Gibbons 1968; Eskew et al., 

2010). 

 

The bias in the sex ratio of the reservoir population appears to be related to the 

sampling methods, as hand captures and basking traps seem more effective at 

capturing females then males. A female-biased sex ratio appears counter intuitive to 

what would be predicted for this area; a cooler climate with potentially colder nest 

temperatures would normally favour a male bias (Schwarzkopf and Brooks 1985). 

Female-bias sex ratio, which may be the product of the same sampling methods - 

have been detected in other turtle populations at the northern extent of their range, 

such as for painted turtles in southern British Columbia (ratios of 1:1.8, 1:1.3, and 

1:1.8 at three different lakes - Macartney and Gregory 1985), for stinkpot turtles 

(0.6:1) and common map turtles (1:2) in the St. Lawrence Islands National Park in 

Ontario, Canada (Carriére 2007. If a female bias truly exists, future study will be 

needed to investigate the mechanism responsible. 

 

This is the first assessment of painted turtles in this reservoir and because there is 

no historical information for comparison, I cannot provide even a tentative comment 

on the status (increasing, decreasing, or stable) of the population. However, the age 

and sex class structure of the population contains a relatively large number of 

reproductive females and neonates. This distribution is similar to other turtle 

populations that have been studied in southern British Columbia (Macartney and 

Gregory 1985). Identifying differences in age and sex class structure can be 

important in determining if a specific sex is being affected and potentially what life 

stages are being impacted. For example, differences is age class structure could be 
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attributed to lower recruitment rates within an area or a sampling bias resulting from 

juveniles and neonates being smaller, and more cryptic (Ream and Ream, 1966; 

Reese and Welsh 1998; Gamble, 2006). Reese and Welsh (1998) identified that 

lower neonate and juvenile survival in a reservoir population in California may be 

attributed to fluctuations in water levels that eliminate shallow shoreline microhabitat 

sites that young animals require. If more detailed studies shared this finding, 

management recommendations regarding maximum outflow for reservoirs may be 

established to maintain shallow shoreline habitat during certain times of the year, 

such as winter emergence or when neonates first exist their natal nests.  

 

My data on the size and age class distribution of this population argues that a 

demographic collapse in the near future is unlikely, as mature females appear 

reasonably common, nesting was generally successful during my study, and 

movements between the upland and the reservoir sites appear infrequent. However, 

my ability to detect movements was biased towards the movement of the reservoir 

turtles and not the movement of the upland turtles and the survival rate of the 

neonates and juveniles is unknown. Therefore monitoring changes in the age and 

sex class distributions over time are essential in determining the long-term 

persistence of the population and whether these numbers are influenced by 

movement between the upland locations.  

 

Nesting Locations and Threats  

 

The majority of turtle species in Canada are semi-aquatic, relying heavily on aquatic 

habitat with varying degrees of terrestrial habitat use. Akin to many amphibians, this 

combination of habitat requirements makes populations of these turtles more likely 

to become threatened and complex management plans may be required. My 

observations of nesting by turtles occurred in habitat patches above the high-water 

mark of the reservoir, suggesting that these sites or the nesting efforts of the female 

turtles are not threatened by reservoir operations. However, potential problems may 

still exist in the following ways: (1) although communal nesting sites and site fidelity 
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are common in painted turtles and other turtle species (Schwarzkopf and Brooks 

1987; Rowe et al., 2005), the predominant use of only two nesting sites by females 

in the reservoir may reflect a shortage of alternative sites (Yagi and Litzgus 2010), 

brought on by the creation of the reservoir and its operations, (2) the distance to 

water a neonate faces when emerging from its natal nest can be greater than that of 

when the female laid her eggs resulting in an increased risk of predation on the 

neonates (Marchand et al., 2002), road mortality, desiccation or starvation as the 

neonates make their way to the water, or (3) these nesting sites could be 

increasingly impacted by the succession of vegetation and canopy cover that 

decreases the solar heating of the site. Although succession is a natural process, 

the negative effects on population with few nesting sites may significantly affect the 

long-term persistence. (4) Lastly, my sample of female turtles was limited, and 

therefore I cannot rule out the possibility that at least some animals may be 

attempting to nest within the drawdown zone leading to subsequent inundation.  

 

Overwintering  

 

My data clearly show that the animals were able to successfully hibernate in the 

reservoir, but a more striking observation is the differences in hibernation tactics 

used by turtles in the two neighbouring sites. This seems to reflect the plastic nature 

of hibernation in these animals: the adoption of the floating mass of vegetation as an 

overwintering site by turtles in the MS site contrasts sharply with the more dispersed 

hibernation by turtles in the AP site. Limited overwintering habitat for ectotherms 

may be common in areas of colder climates (Litzgus et al., 1999), causing 

communal hibernacula to develop even though individuals do not benefit directly 

from the presence of their conspecifics (Shine et al., 2004). Or, it is possible that the 

use of communal hibernation sites aids in the mating process for a species, such as 

that seen for garter snakes (Gregory 1974). This has been postulated for at least two 

turtle species (Clemmys guttata - Litzgus et al., 1999; Glyptemys insculpta - Greaves 

and Litzgus 2007). From a conservation standpoint, however, communal hibernacula 

increase the risk of mass mortality occurring over winter. More focused research on 
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the factors that may be causing these different hibernation patterns or tactics in two 

neighbouring pockets of turtles is underway (Leeming and Larsen, in progress), 

which will provide a better understanding of the winter ecology of these animals.  

 

Mortality  

 

None of the turtle mortalities detected in this study could be directly attributed the 

reservoir operations. However, the identification of mortality sources and survival 

rates over time for age and sex classes will provide insight into the dynamics of the 

population as well as potentially identifying areas of concern where management 

can focus.  

 

Habitat Space, Turtle Movements, Turtle Behaviour, and Environmental Effects  

 

The analysis of habitat use by animals such as semi-aquatic or aquatic species like 

turtles is made difficult by the uncertainty of what habitat is available, given that 

availability is a function of both landscape and animal behaviour (Brown 2008In 

addition, pinpointing the location of an individual turtle (and thereby in theory linking 

it to habitat features) is complicated by the fact that animals are often submerged, 

and/or the approach by researchers to get visual confirmation will often cause the 

animals to move (pers. observ.) This movement may be random due to instinctive 

movement behaviour, or influenced by encountered habitat (Brown 2008). Other 

attempts to quantify the use of habitat by turtles have focused on terrestrial 

movement, nesting (Brown 2008), basking habitat (Lambert et al., 2013), or the 

ability to detect turtles according to habitat type (Bury and Germano 2003; Trans et 

al., 2007). Other researchers have made assumptions that all similar habitat in the 

study is available, and then have looked at multiple habitat scales in order to 

quantify habitat selection (Edge et al., 2010) or have compared turtle locations to 

random locations (Harden et al., 2009). The turtles in my study did not show a 

difference in habitat space use between high water and low water when all turtles 

locations in each site were combined or when sites where compared. Future 
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research on the habitat selection of these turtles may benefit from the use of more 

sophisticated technology  

 

The turtles in my study population demonstrated that basking events were detected 

more on floating pieces that as water levels rose Turtles residing at the MS Site 

were most often detected along the shoreline of the mainland or on the floating matt 

of vegetation, particularly when water levels peaked and completely inundated the 

area, connecting the MS site to the main stem of the river (Chapter 1; Study Sites). 

During hibernation, this floating matt of vegetation appears to provide a unique 

habitat and cover for the turtles. Conversely, in my other study site (AP), areas that 

were above water at the start of each active season became submerged when water 

levels rose, but not to the same extent as the MS site, thus creating shallow aquatic 

habitat in otherwise dry areas. This increase in the wetland system helps explain 

why turtles within the AP Site were most often detected in marsh habitat, and this 

seasonal creation of habitat may be beneficial to the population (Yagi and Litztgus 

2012). Some variation in movement may be partly due to differences in habitat at the 

two sites and by the fluctuations in water levels. The shorter movements detected in 

juvenile turtles may be because the rise in water level eliminated the shallow waters 

that they utilize (Reese 1996; Reese and Welsh 1998), therefore resulting in 

decreased movement until they become strong enough swimmers. These 

differences in habitat could potentially lead to higher energetic costs or risk of 

predation for the affected turtles (Reese 1996; Grayson and Dorcas 2004), but future 

work will be needed to elucidate this.  

 

Despite the number of ways that change in the reservoir water level could impact the 

turtles, I did not detect any significant changes in my measurements of behaviour. 

The turtles in my study used a wide-array of habitats/basking sites, suggesting a 

plastic response to not only site-specific differences in habitat but also more 

sweeping changes brought about by the fluctuating water levels. During low water, 

the turtles used emergent vegetation to bask, but once water levels rose, they were 

more frequently found at the surface of the water, using aquatic vegetation or 
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partially-submerged wood to position themselves. These data should not be taken to 

indicate habitat selection per se: determining selection for these or other habitat 

features is complicated for this system, given that most turtle detections were 

underwater or basking. Nonetheless, the data suggests that turtles in MS can be 

found on the shoreline relatively more often, and that the main population of 

reservoir turtles exists within these two sites, but the reasons for doing so remain to 

be determined (i.e. shortage of basking sites versus less suitable aquatic habitat). 

 

Conclusion 
 

Overall, this study indicates that this turtle population seems outwardly capable of 

coping with the reservoir environment, demonstrating little displacement or shifts in 

behaviour due to changes in water levels over the course of the active season. 

Behavioural plasticity also appears to allow them to exist in patches of reservoir 

habitat that differ at a more local scale. However, as mentioned, the stress exerted 

on populations of turtles and other aquatic species by reservoir operations will likely 

vary tremendously from site to site, and through time. Furthermore, the persistence 

of turtles in this location may be due in some part to the serendipitous formation of 

habitat ‘patches’ after the reservoir was filled (sites AP and MS) rather than careful 

planning or engineering (e.g. land contouring) during construction. With little 

historical inventory data, it is difficult to say whether the reservoir augmented or 

decreased the amount of habitat available for WPT in this region. In general the 

continued study of animal populations living in extreme environments (both 

anthropogenic and natural) is needed to develop long-term, effective management 

strategies for these populations.  
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CHAPTER THREE 

MANAGEMENT IMPLICATIONS AND FUTURE RESEARCH 
 

Introduction 

 
The overarching goal of this thesis was to provide an ecological baseline for an 

extreme-northern population of western painted turtles (Chrysemys picta bellii) that 

inhabits a hydroelectric reservoir in British Columbia Canada. At the same time, I 

directed my data collection towards understanding the potential effects of reservoir 

operations on the turtles. Beyond this, it was my intention to provide information to 

BC Hydro and other organizations that would help in crafting effective management 

strategies for these animals. Western painted turtles are provincially a Blue-listed 

species and the intermountain population is listed as “Special Concern” under 

Schedule 1 of the federal Species at Risk Act (SARA 2008) (COSEWIC 2006). Due 

to the status of the species, its regional importance, the location of the population at 

the northern extent of its range, and the increase in the demand for hydroelectric 

power, the need for understanding the ecology of WPT at my study site may be 

critical to their long term persistence. 

 

In the preceding chapter, I examined various aspects of turtle ecology and 

commented that despite the dynamic and anthropogenic nature of the reservoir, the 

turtle population I studied did not appear noticeably different from other northern 

population densities, at least within the two main sites within the reservoir that turtles 

occupy. Water levels altered available habitat in varying degrees and these changes 

appeared to have no significant effect on turtle behaviours (average daily distance, 

distance to shore, and basking). However, season and water temperature did 

appear to have a significant effect of the turtle behaviours as defined in this study. 

Water levels did appear to influence the substrate upon which turtles were detected 

basking, although I cannot comment on the repercussions of this apparent forced-

change. Finally, no mortalities that were detected over the course of this study could 

be directly attributed to reservoir operations.  
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Management Implications and Recommendations 

 

There are a number of management issues that emerged from my study in regards 

to water level fluctuations, these include;  

 

1.  Habitat alternation, including basking sites, when water levels fluctuate 

2. loss of quality nesting sites above the drawdown zone;  

3. unidentified nesting sites above and below the high water mark; and 

4. potentially limited overwintering habitat. 

 

In addition to these issues raised in Chapter 2, I believe there are several other 

important - perhaps more important - issues that may ultimately affect the 

persistence of these animals. Observations of nesting turtles occurred primarily in 

habitat patches above the high-water mark of the reservoir, suggesting that these 

sites and the nesting efforts of the majority of female turtles are not threatened by 

reservoir operations. However, these sites are all anthropogenic in nature and occur 

in areas of high human and vehicle traffic. I also cannot completely rule out that 

some individual turtles may be nesting within the drawdown zone, leading to the 

inundation and death of the eggs come high water. All of the nest sites I detected 

were anthropogenic in nature, suggesting this may be the overwhelming pattern 

along the reservoir. Further, within these sites vegetation encroachment may be an 

issue, as I detected a number of situations where eggs or neonates still in the nest 

appeared to have been killed by the growth of plant roots. 

 

Turtles crossing the road to move between water bodies or to nest are subject to 

road mortality. Over the course of this study three adult turtles were found killed 

along the road, which is parallel to the reservoir during the nesting season. One of 

these animals was confirmed to be a gravid female, and due to the timing of the 

movements by the other turtles, which were during the nesting season, it is likely 

that they were also mature females. Because turtles are characterised by low annual 

recruitment, high adult survival rate, and delayed sexual maturity particularly in 
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northern climates, the mortality of sexually mature turtles, specifically females, can 

significantly alter the population structure (Steen and Gibbs 2004).  

 

The winter month’s sub-zero temperatures may also be a source of mortality due to 

hypoxic water conditions and lack of other resources (St. Clair and Gregory 1990) or 

alteration of the temperature regime to changing water levels that causes freezing. 

Winter telemetry and early spring surveys revealed that adult and juvenile turtles 

overwinter within the drawdown zone, that turtles overwinter independently at 

scattered locations as well as in a communal location, and that some site fidelity was 

seen. No turtle mortalities could be directly attributed to the reservoir operations, 

including those deaths suspected to be winter mortalities. Overall my winter results 

are limited due to my sample size and additional work is needed to comment on the 

exclusivity of these sites for hibernating. Frequent and detailed locations of WPTs 

should be collected over the course of the winter (beyond the feasibility of this 

project), along with data on water depth, flow, temperature, and dissolved oxygen to 

determine if overwintering habitat is a limiting factor. This work is now in progress 

(Leeming and Larsen, in progress).  

 

The potential importance of habitat and land-use decisions above the reservoir high-

water mark may need to be better incorporated into the current management goals 

and hypotheses steering turtle research and mitigation efforts in this area. Certainly, 

turtles from the reservoir move between water bodies upland of the reservoir, nest 

above the high water mark, and cross roads above the reservoir. Furthermore, there 

was no historic data that would aid in assessing how the original construction of the 

reservoir altered the environment and available habitat for the turtles. The magnitude 

and implications of these observations are not well understood at this point in time, 

but there is most likely some relevance; for example, the alteration of the two known 

communal nesting sites and/or increased mortality to dispersing young or 

reproducing females would impact the reservoir population. Ensuring the long-term 

persistence of the population of turtles in the reservoir will likely require a partnership 
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between h stakeholders and resource managers to consider the following 

recommendations:  

 removal of encroaching vegetation to maintain current nesting sites;  

 research to investigate the utility of artificial nesting sites, their proper 

placement (e.g., solar radiation, soil type, and distance to water); 

 the establishment of artificial basking sites and/or vegetated islands providing 

permanent habitat for turtles when water levels are high and their traditional 

basking sites are inundated; 

 focused research to determine what turtles are selecting for, diet and food 

availability in relation to the thermal profiles of the reservoir and upland 

ponds;  

 focused research to determine neonate and juvenile survival and habitat use;  

 focused research on hibernation ecology, and protection of hibernating 

locations with emphasis on communal sites where the animals are at risk of 

mortality; and 

 possible design and construction of artificial habitat in the reservoir that may 

include vegetated floating island, basking sites, or a berm in areas to create 

wetland habitat sheltered from the main stem of the Columbia River and 

water fluctuations.  

The Revelstoke WPT population not only faces the challenge of living in one of the 

most northerly locations for the species, but also in a constantly fluctuating 

environment due to hydroelectric operation. To identify direct and indirect impacts of 

reservoir operations on the turtles, a combination of methods must be used to 

identify population demographics, habitat use, overwintering and nesting locations, 

and the presence of critical habitat within the reservoir over varying water levels. 

Results from further research, particulary habitat use of juveniles and neonates may 

be important in identifying management recommendations in relation to restricting 

the amount of water being release during the time when neonate turtles are 

emerging from their nests and juveniles from winter hibernation. Increased water 

levels may eliminate habitat required by this age class, skewing the age class of the 

turtle population (Reese 1996; Reese and Welsh 1998). Restrictions to high water 
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levels during this sensitive time may reduce these potential effects. Turtles are a 

long-lived species, therefore long-term monitoring is needed because of the lag time 

required to identify more subtle impacts on the population (Reese 1996; Reese and 

Welsh 1998). My research provides the foundation upon which to develop a long-

term strategy for this population and also provides a baseline for future studies. 

Additional focused work on these and other turtles inhabiting such dynamic 

environments may provide insight into how populations will be able to persist 

through subtle and drastic changes in their environment. 

 

Conclusion  

 

Animals occupying atypical environments, such as reservoirs or at the edge of their 

range, often face stronger selection pressures than animals occupying the region 

within the core of their range. This therefore will impact their habitat use, 

movements, recruitment, and survival rates (Lescia and Allendorf 1995; Arvisais et 

al., 2002). The results of my study identified the basic ecology of the turtles in the 

reservoir and could not attribute any direct effects of the reservoir operations on the 

turtle themselves. However; this research identified that there is a high potential for 

mortality to occur at the nesting sites due to urban development and the succession 

of vegetation, and management of the population may require strategies that are not 

necessarily related to reservoir operations. Appropriate management for this species 

and other semi-aquatic species that reside within drawdown zones is complex, given 

the reliance on both terrestrial and aquatic habitat, the life cycles of the species, 

movement between water bodies and sites, the dynamic nature of hydroelectric 

operations, and the potential impact of freezing temperatures. These factors will all 

need to be considered in tandem with the life-cycle of the focus species. For 

example, the release of water in reservoirs further south may have to account for 

multiple clutches laid by turtles throughout the year, complicating the timing of the 

water release Management and mitigation plans should focus on determining 

sources of mortality, boosting recruitment (Reese 1996), and maintaining critical 

habitat features for each species.   



77 
 

Literature Cited 
 

Arvisais, M., J. Bourgeois, E. Lévesque, C. Daigle, D. Masse, and J. Jutras. 2002. 
Home range and movements of a wood turtle (Clemmys insculpta) population 
at the northern limit of its range. 408:402–408. 

 

COSEWIC. 2006. COSEWIC assessment and status report on the western painted 
turtle Chrysemys picta bellii (pacific coast population, intermountain-rocky 
mountain population and prairie/western boreal - Canadian Shield population) 
in Canada. Vol. vii + 40 pp. Ottawa: Committee on the Status of Endangered 
Wildlife in Canada [Web accessed, January 2012, 
www.sararegistry.gc.ca/status/status_e.cfm). 

 

Leeming A. and K.W. Larsen. Personal Comminication.2013. Graduate Student, 
Thompson Rivers University. Kamloops, British Columbia.  

 

Lesica, P., and F.W. Allendorf. 1995. When are peripheral populations valuable for 
conservation? Conservation Biology 9:753.  

 

Reese, D. A. 1996. Comparative demography and habitat use of western pond 
turtles in northern California: the effects of damming and related alterations. 
University of California. 253 pp. 

 

Reese, D.A., and H.H. Welsh, Jr. 1998. Habitat use by western pond turtles in the 
Trinity River, California. The Journal of Wildlife Management 62:842-853. 

 

Species at Risk Public Registry. 2008. Species at risk public registry. Gatineau, 
Quebec. [Web accessed Feb 25th, 2010 http://www.sararegistry.gc.ca].  

 

St. Clair, R.C., and P.T. Gregory. 1990. Factors affecting the northern range limit of 
painted turtles (Chrysemys picta): winter acidosis or freezing? Copeia:1083-
1089. 

 

Steen, D.A., and J.P. Gibbs. 2004. Effects of roads on the structure of freshwater 
turtle populations. Conservation Biology 18:1143-1148. 

 

  



78 
 

 

 

 

 

APPENDIX A. SUMMARY OF RADIO TAGGED TURTLES AND THEIR 
MOVEMENTS 
  



79 
 

Table A-1 Summary of radio-tagged western painted turtle (Chrysemys picta bellii) 
with more than one location, in Revelstoke Reach of the Upper Arrow Lakes, British 
Columbia. 
 
Turtle 
Name 

Number of 
Locations 

Mean ±SE 
Distance Travel 

(m) 
Minimum 

(m) 
Maximum 

(m) 
T2 11 141.0 76.6 1409.6 2.2 627.9 
T3 11 553.0 147.0 5526.0 58 1299.0 
T4 12 187.9 96.7 2066.4 4.5 1105.0 
T5 14 158.6 44.9 2061.8 16.2 559.3 
T6 10 141.6 54.4 1416.3 1.0 438.0 
T7 14 339.5 65.1 4073.9 51.9 660.5 

T11 9 83.0 23.7 664.0 1.0 215.6 
T12 7 136.6 99.1 819.6 7.1 627.4 
T13 6 473.0 278.0 2367.0 8.0 1474.0 
T32 29 354.0 104.0 9555.0 1.0 2445.0 
T43 14 177.7 53.1 2310.3 5.1 483.4 
T47 17 527.0 220 8425.0 2.0 2712.0 
T61 36 303.8 98.9 10329.7 3.6 2601.0 
T64 37 489.0 194.0 17116.0 1.0 4998.0 
T65 11 1174.0 500 11740.0 32 4634.0 
T74 28 217.2 35.5 5864.6 0.0 749.7 
T79 5 110.8 56.6 443.0 1.0 269.5 
T80 17 377.4 92.3 6038.7 12.0 1273.3 
T81 17 285.3 66.0 4565.4 24.3 900.9 
T82 11 286.0 114.0 2860.0 4.0 997.0 
T84 20 309.9 95.5 5888.1 3.2 1415.7 
T85 19 120.4 32.3 2168.0 6.7 508.2 
T86 19 455.5 93.2 8199.4 8.2 1203.4 
T87 18 370.7 96.8 6302.5 3.0 1304.9 
T88 20 281.8 83.2 5354.5 1.4 1254.5 
T90 16 623.0 229.0 9350.0 2.0 2921.0 
T91 18 729.0 259.0 12400.0 6.0 3948.0 
T97 17 240.8 59.6 3853.0 4.0 903.7 
T98 8 552.0 338.0 4413.0 11.0 2887.0 
T99 21 459.0 107.0 9182.0 61.0 1755.0 

T104 15 141.9 44.8 1987.1 3.0 591.3 
T106 14 301.0 111.0 3913.0 17.0 1270.0 
T107 16 152.8 62.5 2292.4 5.4 679.0 
T110 15 507.6 89.5 7106.0 47.9 1178.5 
T111 13 289.0 70.1 3468.0 48.5 917.1 
T114 12 415.0 117.0 4983.0 13.0 1217.0 
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Turtle 
Name 

Number of 
Locations 

Mean ±SE 
Distance Travel 

(m) 
Minimum 

(m) 
Maximum 

(m) 
T2 11 141.0 76.6 1409.6 2.2 627.9 
T3 11 553.0 147.0 5526.0 58 1299.0 
T4 12 187.9 96.7 2066.4 4.5 1105.0 
T5 14 158.6 44.9 2061.8 16.2 559.3 
T6 10 141.6 54.4 1416.3 1.0 438.0 
T7 14 339.5 65.1 4073.9 51.9 660.5 

T11 9 83.0 23.7 664.0 1.0 215.6 
T12 7 136.6 99.1 819.6 7.1 627.4 
T13 6 473.0 278.0 2367.0 8.0 1474.0 
T32 29 354.0 104.0 9555.0 1.0 2445.0 
T43 14 177.7 53.1 2310.3 5.1 483.4 
T47 17 527.0 220 8425.0 2.0 2712.0 
T61 36 303.8 98.9 10329.7 3.6 2601.0 
T64 37 489.0 194.0 17116.0 1.0 4998.0 
T65 11 1174.0 500 11740.0 32 4634.0 
T74 28 217.2 35.5 5864.6 0.0 749.7 
T79 5 110.8 56.6 443.0 1.0 269.5 
T80 17 377.4 92.3 6038.7 12.0 1273.3 
T81 17 285.3 66.0 4565.4 24.3 900.9 
T82 11 286.0 114.0 2860.0 4.0 997.0 
T84 20 309.9 95.5 5888.1 3.2 1415.7 
T85 19 120.4 32.3 2168.0 6.7 508.2 

T116 14 267.9 67.8 3482.2 28.3 921.4 
T117 12 307.2 85.4 3379.2 12.2 818.0 
T120 11 124.1 26.8 1241.4 18.0 267.4 
T129 6 54.3 36.1 271.7 8.2 197.6 
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APPENDIX B. JUVENILE AND ADULT MAPPED LOCATIONS 
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Figure B-1 Adult and juvenile turtle locations during the 2011 season in Airport 
Marsh, Upper Arrow Lakes, British Columbia, Canada (LGL 2012). 
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Figure B-2 Adult and juvenile turtle locations during the 2011 season in Montana 
Slough, Upper Arrow Lakes, British Columbia, Canada (LGL 2012).  
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APPENDIX C. MALE AND FEMALE MAPPED LOCATIONS BY SITE 
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Figure C-1 Adult male and female turtle locations during the 2011 field seasons in 
Airport Marsh, Upper Arrow Lakes, British Columbia, Canada (LGL 2012). 
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Figure C-2 Adult male and female turtle locations during the 2011 field seasons in 
Montana Slough, Upper Arrow Lakes, British Columbia, Canada (LGL 2012).
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APPENDIX D. MAPPED OVERWINTERING LOCATIONS BY SITE 
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Figure D-1 Overwintering locations identified in Montana Slough during the winter of 
2010 and 2011. Communal hibernation site is located in a pond known as ‘Winter 
Pond’, Upper Arrow Lakes Reservoir, Revelstoke B.C. (LGL 2012).  
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Figure D-2 Overwintering locations identified in Airport Marsh during the winter of 
2010 and 2011. One turtle left Airport Marsh and overwintered in Williamson Lake 
during 2010, Upper Arrow Lakes Reservoir, Revelstoke B.C. (LGL 2012). 
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APPENDIX E. - REVELSTOKE REACH WESTERN PAINTED TURTLE 
(CHRYSEMYS PICTA BELLII) MONITORING PROGRAM: TURTLE 
DETECTABILITY IN THE RESERVOIR 
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INTRODUCTION 

 

The Western painted turtle (WPT) (Chrysemys picta bellii) is a species federally 

listed as Special Concern and Endangered under the Species at Risk Act and 

provincially listed as ‘Blue’ and ‘Red’ listed (SARA) (COSEWIC 2006). The turtle’s 

habitat ranges from Ontario to the west coast, and it is the only native freshwater 

turtle in British Columbia and Alberta. The WPT thus plays a vital role in maintaining 

the biodiversity for not only these provinces, but also all of Canada (Blood et al., 

1998; COSEWIC 2006). WPTs are long-lived reptiles with high rates of juvenile 

mortality and low nest success (COSEWIC 2006). Turtle populations in the west are 

believed to be diminishing due to human disturbances such as loss of wetland 

habitat, road construction, increased recreational activities (Garber & Burger 1995; 

Blood et al., 1998), and, potentially, hydroelectric operations. The limited knowledge 

about their populations, demographics and their ecological roles in their environment 

contribute to the at-risk status of WPTs (COSEWIC 2006). 

 

I conducted research on the WPT at the northern extent of their range in the 

Columbia River system where this species is recognized as a special conservation 

concern (Golder Associates 2009). British Columbia Hydro & Power Authority (BC 

Hydro) funded my main project investigating the population demographics and 

movements of the turtles within the Arrow Lakes Reservoir near the town of 

Revelstoke, BC. The animals appear to be confined to a limited area of the reservoir 

known as Revelstoke Reach. This population is of interest because of the potential 

impacts reservoir operations may have on turtle survivorship and productivity, and 

because of the peculiarities of the habitat (northern reservoir at the fringe of their 

distribution). My project involved a two-year field examination that began in April 

2010, assessing the impacts of reservoir operations on these animals and making 

recommendations for habitat enhancement. A conventional mark-recapture protocol 

is being used alongside a radio-telemetry program to determine population 

demographics and impacts, if any, caused by fluctuating water levels on nesting 
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success and on winter hibernation sites. Additional funding from the Canadian 

Wildlife Federation (CWF) Endangered Species 

Fund permitted us to explore the possibilities of developing a predictive model ‘tool’ 

that would aid in census work on the WPT.  

 

Oftentimes, researchers or resource managers are confined by time and or budget 

as surveys for cryptic species, such as turtles, are time-consuming and often 

ineffective (Mazerolle et al., 2007). The additional funding provided by the CWF 

allowed me to take advantage of the animals I was currently radio-tracking as part of 

the larger project during 2011. Using these animals, I collected data on their activity, 

and how their ‘sightability’ related to environmental conditions (i.e. when the animals 

visible to human surveyors, and how that relates to variables such as time of 

season, time of day, water and air temperatures, etc.). This information was used to 

develop a sightability model to aid researchers in determining the best time(s) to 

conduct surveys aimed at detecting or enumerating turtles within the Arrow Lake 

reservoir.  

 

I requested support from the Endangered Species Fund to provide an additional 

summer research assistant to the project (directed in the field by N. Basaraba, an 

MSc graduate student) and help defer the accommodation costs associated with the 

hiring. A small portion of the funds were used to purchase temperature data loggers 

(Maxim Innovation Inc.: iButtons®), wind metres, fuel and other equipment needed 

to collect data on environmental parameters. My background research in this area 

provides an opportune situation to collect additional information tailored to aid in the 

management and conservation of this species.  

 

METHODS 

 

Field work began in May and lasted until the end of August 2011. My ongoing work 

involved actively searching for WPT throughout the field season by visual surveys 

and systematic searches. Turtles were observed and or captured whenever possible 
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(i.e. shoreline or terrestrial encounters) and live trapped using basking and hoop 

traps. Each turtle was assigned to a general size (neonate, juvenile, adult), and 

behavioural category (basking, swimming, etc.).Each turtle was also measured, 

weighed and a habitat assessment was conducted.  

 

I used turtles equipped with transmitters (28 turtles; 18 females, 9 males, and 2 

juveniles) over the course of the summer and sightings from my systematic surveys 

from my background project (for a total of 297 locations) to determine whether the 

animals were capable of being sighted (i.e. basking or stationary in a location where 

they could, in theory, be observed) or whether the animals were too cryptic to permit 

detection (i.e. subsurface, or embedded in vegetation).  

 

Each animal was radio-tracked at least once per week. In addition to the weekly 

location, subsets of turtles (20 of the 28 radioed turtles) were located once a week, 

at rotating times of the day, to determine whether they were sightable or not. Each 

week, I selected at least two turtles (paired together for the sake of logistics) that 

would be more closely monitored over the course of a day (i.e. 0700-1700 hours). 

The ‘sightability’ of these animals was recorded approximately every 60 minutes, 

along with more detailed autecology information; permitting better insight into the 

pattern and process by which the turtles relocate during the course of the day, and 

how the sightability model might be improved. Initial tracking of the turtle using radio 

telemetry provided an idea of where the turtle was located; from there, visual 

scanning (a common method used for detecting turtles) with the naked eyed and or 

binoculars was used to determine if the turtle was detectable. 

 

At the same time that the above observations were being collected on the turtles, I 

also collected data on a number of environmental parameters that could potentially 

be used in isolation or in combination to predict turtle sightability. Such 

environmental parameters included water and air temperatures at the location where 

turtles were observed, date, wind speed, precipitation (based on a categorical 

scale), cloud cover, humidity, aspect (the direction the sun is in respect to the 
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location of the turtle), time of day, activity of the turtle, GPS location, and percent 

cover of a 5.64 m radius plot (where applicable) of submergent, emergent, and 

floating leaved-vegetation, grass, shrubs, and trees and if basking sites were 

present. I also stationed ‘dummy’ model turtles (rubber replicas, filled with water and 

equipped with temperature data loggers (iButtons®) that recorded temperature every 

four hours, on neighbouring basking sites and in other locations (e.g. reed beds) that 

turtles are known to inhabit (based on my 2010 data). The data from these models 

were thought to provide a form of ‘reference’ for the data collected from the real 

turtles, and (calibration notwithstanding) may be used in future work as an empirical 

indicator as to whether turtles should be basking or not. 

 

Data were collected on 22 habitat and environmental parameters and model turtle 

temperatures (closest to the located turtle) to explain turtle sightability using binary 

logistic regression (detectable=1, not detectable=0; all ‘not detectable” locations are 

considered a false zero; the turtle was present during the survey but not detected; 

Martin et al., 2005). A correlation analysis was used to detect autocorrelation among 

the variables. If two variables were highly correlated (R>=0.75 or R<=-0.75) one 

variable was excluded from the model (Reese 1996). Akaike’s Information Criterion 

(∆AICc and Akaikes weights (AICwt)) was used to determine the ‘best’ or ‘top’ 

model. The model with the lowest ∆AICc was considered the top model given the 

comparisons; however, models with a change of less than two in the AIC score were 

considered equivalent models. AICwt, which indicate the level of support in favour of 

a given model being the most parsimonious, was then used to determine the most 

parsimonious model (Burnham and Anderson 2002 & 2004). Finally, receiver 

operating characteristics (ROC) and area under the curve (AUC) were used to 

evaluate the accuracy of the model variables in determining the detectability of a 

turtle. Models with areas between 0.5 and 0.7 are considered poor, model areas 

between 0.7 and 0.9, while model areas greater than 0.90 are considered very good 

in their ability to measure predictive accuracy (Pearce and Ferrier 2000). 
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RESULTS 

 

The detectability of the turtles through the use of systematic surveys and telemetry 

during the 2011 field season was biased toward “not-detectable” (detectable; n=110, 

not-detectable; n=187, even though the presence of the turtle was confirmed through 

telemetry. 

 

Of the 103 models evaluated, all models with ∆AICc less than 10 contained habitat 

and environmental variables and considered basking logs, cloud cover (CC), and 

date to be influential, while the top seven models included grass and herbaceous 

vegetation. The top four models have a ∆AICc less than two and are considered 

equivalent models (Burnham and Anderson 2002). However, the top model 

(baskingLogs + CC + date.1 + grass.herb) has the most support demonstrated in the 

AICwt and is considered the most parsimonious model (Table 1), while supporting 

an ROC score that ranked our top ranked model as reasonable in predicative 

accuracy (0.76). 
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Table 1. Summary of AIC, ∆AICc, and AICcWt for the top nine candidate models for 

predicting the detecting of a turtle within the Revelstoke Reach, Arrow Lakes 

Reservoir, British Columbia, Canada.  

 

Models AICc ∆AICc AICcWt 

baskingLogs + CC + date.1 + grass.herb 

 

340.47 0.00 0.48 

baskingLogs + CC + date.1 + grass.herb + salix 

 

341.85 1.38 0.24 

baskingLogs +CC +date.1 +grass.herb + precipcat 

 

342.57 2.09 0.17 

baskingLogs + CC + date.1 + distshore + grass.herb + 

humidity 

 

344.20 3.73 0.07 

baskingLogs + CC + date.1 + totalmin + wtrdepth 

 

346.99 6.52 0.02 

baskingLogs + CC + date.1 + totalmin 

 

349.27 8.80 0.01 

baskingLogs + CC + date.1 + totalmin + watertemp + 

windcat + wtrdepth 

 

349.49 9.02 0.01 

airtemp + avgwind + baskingLogs + CC + CWDG5 

+CWDL5 + date.1 + dew + distshore + eleva + emer + 

floatleaved + forest + grass.herb + humidity + precipcat 

+ submer + totalmin + watertemp + avgwind + wtrdepth 

 

349.77 9.29 0 

baskingLogs + CC + date.1 + totalmin + watertemp 350.08 9.61 0 

* totalmin represents the time of day in minutes from midnight 
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DISCUSSION 

 

My results suggest that the most effective model for predicting the sightability of 

turtles was that involving basking logs, cloud cover, date, and grass and herbaceous 

vegetation. The effectiveness of this model suggests it has reasonable potential as a 

tool for selecting specific times to maximize the chances of sighting a turtle. 

However, it is important to note that this particular model may not necessarily be as 

effective when applied to another ecosystem. Variables important to sightability at 

this location may have less effect elsewhere, or be totally absent.  

 

Research conducted on the basking behaviour of turtles found that turtles optimize 

body temperature by using the available environmental temperatures, such as air 

and water temperatures, and that basking is a non- random event (Crawford et al., 

1983; Schwarzkopf and Brooks. 1985). Boyer (1965) found that high air 

temperatures and low water temperatures promote basking. My study looked at the 

detectability of a turtle in relation to their environment, which included activities other 

than basking. Crawford et al., (1983) and found that total radiation (solar), air 

temperature, wind speed, and substrate temperature influenced the environmental 

temperature of where a turtle was found basking. In my study I found that cloud 

cover, date, the presence and absence of basking logs, grass and herbaceous 

vegetation influenced environmental temperatures and the detectability of turtles. 

Although other environmental and habitat variables were not included in my ‘top’ 

model, these variables will still have an effect on the environmental temperature as 

displayed by the global model, which was ranked eighth in my study. Depending on 

the area being surveyed, these other variables may have varying degrees of 

influence and should be considered when designing a study.  

 

Vegetation has an important role in the ability to locate a turtle as well as 

environmental temperature as it provides shelter from predators and the elements, 

such as wind. Within my study, reed canary grass (Phalaris arundinacea) was the 

dominate vegetation within the reservoir sites and an important factor in detection. A 
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decrease in the surrounding vegetation allowed for an improved probability in turtle 

detection (Table 2). The presence of basking logs is an important feature for turtles, 

but turtles may be basking within wetland vegetation, as observed frequently at my 

sites, and go undetected. Cloud cover plays another important role in air 

temperature. Solar radiation is reflected off clouds and into space, therefore the 

greater the cloud cover the less solar radiation reaching the surface decreasing the 

air temperature, and thus decreasing the probability of detecting a turtle (Table 2). It 

is not a surprise that date plays an important role in turtle detection as it greatly 

influences air and water temperatures as well as the growth of the vegetation and 

should be the top consideration when surveying for turtles (Table 2).  
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Table 2 Summary of the ‘top’ model variables and their coefficients, standard error 

and 95% confidence interval s for predicting the detecting of a turtle within the 

Revelstoke Reach, Arrow Lakes Reservoir, British Columbia, Canada.  

  

Variable Coefficients SE 95% CI 

Basking Logs: not enough 0.75 0.78 0.19 - 3.52 

Basking Logs: sufficient 1.87 0.32 -0.82 - 2.34 

Cloud Cover -0.013 0.0045 -0.023 - -0.0053 

Date -0.010 0.0044 -0.018 - -0.0022 

Grass and herbaceous 

vegetation  

-0.38 0.011 -0.062 - -0.017 

Intercept 1.84 0.86 0.19 - 3.52 
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Through the use of telemetry my study was biased towards the detection of turtles, 

however, my results indicate that turtles were still difficult to detect even with the 

advantage of knowing the approximate location of the animal. This is important to 

note because my data likely overestimates the detection of turtles and should be 

considered when surveying for these cryptic species. In addition, visual surveys are 

not an effective technique for determining an estimate of the size of a turtle 

population (Refsnider et al., 2011).  

 

The behaviour of thermoregulation in turtles and other species (Charland 1995) that 

use their environment to thermoregulate is multifaceted and highly correlated to their 

environment. Variation arises in habitat and seasonal heterogeneity, gender and age 

(Crawford et al., 1983; Schwarzkopf and Brooks 1985; Reese 1996; Boulinier et al., 

1998; Grayson and Dorcas 2004). Understanding the environmental temperature 

allows us to better predict the detectability of turtles and thus can be an important 

tool for resource managers in planning and surveying.  

 

The development of this tool to aid in the detection of turtles will make a valuable 

contribution to the methods and tools used by biologists and resource managers. 

Ultimately, the full effectiveness of the selected model has yet to be determined until 

it can be tested on other populations, or at least on the same population in 

subsequent years. Further testing of the model will take place within Revelstoke 

Reach through the continuation of the long-term monitoring strategy for the turtles 

set forth by BC Hydro, as well as being published in the peer-review literature.  
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