

Course Outline

Computing Science Department

Faculty of Science

COMP 2130 – 3 Credits

Introduction to Computer Systems (3,1,0)
Fall 2015

Instructor: Phone/Voice Mail:
Office: E-Mail:
Office Hours:

CALENDAR DESCRIPTION

Students learn the basic concepts of computer systems. Students are introduced to the concepts
of computer architecture, the ‘C’ and assembly programming languages as well as the use of Linux
operating system. Students learn about memory organization, data representation, and
addressing. Students are introduced to the concepts of machine language, memory, caches,
virtual memory, linkage and assembler construction as well as exceptions and processes.

PREREQUISITES

 COMP 1230 or COMP 2120, and

 COMP 1380 or MATH 1700

EDUCATIONAL OBJECTIVES/OUTCOMES

Upon successful completion of the course, the student will demonstrate the ability to:

 Understand the fundamentals of computer architecture.

 Familiar with programming through the powerful C programming language .

 Familiar with programming through assembly language.

 Understand critical relationship between programming and computer architecture.

 Understand the efficient programming through code optimization.

TEXTS/MATERIALS
The course uses the following texts:

 B1: Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, 2/E,
Prentice Hall, 2011
ISBN 10: 0-13-610804-0

 B2: Kernighan and Ritchie, The C Programming Language, Prentice Hall, 1988, ISBN 10:
0-13-110362-8

 B3: David A. Patterson and John L. Hennessy, Computer Organization and Design,
Morgan Kaufmann - Fifth Edition, 2013, ISBN-13: 978-0124077263

2

SYLLABUS - Lecture & Lab Topics:

Course Topics Reference to Text
Book*

Duration**

1. Basic concepts of digital systems:

 1.1 Introduction B3-Appendix B.1 1.5 weeks

 1.2 Gates, Truth Tables, and Logic Equations B3-Appendix B.2

 1.3 Combinational Logic B3-Appendix B.3

 1.4 Using HW Description Language B3-Appendix B.4

 1.5 Clocks B3-Appendix B.7

 1.6 Memory Elements B3-Appendix B.8

 1.7 SRAMs and DRAMs B3-Appendix B.9

 1.8 FSM B3-Appendix B.10

2. Computer Abstraction and Technology

 2.1 Introduction B3-Chapter 1:1.1-1.2 1 week

 2.2 The compilation system B3-Chapter 1:1.3 &
B1-Chapter 1:1.2-1.3

 2.3 Computer Architecture and Processor
Technology

B3- Chapter 1:1.4-
1.5 &
B1-Chapter 1:1.4-1.6

 2.3 How OS manages HW B1-Chapter 1:1.7-1.8

3. Introduction to Linux OS and C Language

 3.1 Getting Familiar with Linux Instructor notes 2.5 weeks

 3.2 Introduction to C Programming B2-Chapter 1-4

 3.3 Advanced C Programming B2-Chapter 5-8

4. Memory Organization, Data representation, and
Addressing

 4.1 Information Storage B1-Chapter 2:2.1 1 week

 4.2 Integer Representation and Floating Point
Numbers

B1-Chapter
2:2.2&2.4

5. Basics of Architecture, Machine Code

 5.1 A Historical Perspective B1-Chapter 3:3.1 1 week

 5.2 Program Encodings B1-Chapter 3:3.2

 5.3 Data Formats B1-Chapter 3:3.3

6. Machine Level Programming

 6.1 Arithmetic and Logical Operations B1-Chapter 3:3.5 1 week

 6.2 Control B1-Chapter 3:3.6

 6.3 Procedures B1-Chapter 3:3.7

 6.4 Arrays B1-Chapter 3:3.8

7. Memory and Caches

 7.1 Storage Technologies B1-Chapter 6:6.1 2 week

 7.2 Locality B1-Chapter 6:6.2

 7.3 The Memory Hierarchy B1-Chapter 6:6.3

 7.4 Cache Memories B1-Chapter 6:6.4

 7.5 Writing Cache-friendly Code B1-Chapter 6:6.5

 7.6 Putting It Together: The Impact of Caches on
Program Performance

B1-Chapter 6:6.6

3

8. Linking

 8.1 Compiler Drivers B1-Chapter 7:7.1 2 week

 8.2 Static Linking B1-Chapter 7:7.2

 8.3 Object Files B1-Chapter 7:7.3

 8.4 Relocatable Object Files B1-Chapter 7:7.4

 8.5 Symbols and Symbol Tables B1-Chapter 7:7.5

 8.6 Symbol Resolution B1-Chapter 7:7.6

 8.7 Relocation B1-Chapter 7:7.7

 8.8 Executable Object Files B1-Chapter 7:7.8

 8.9 Loading Executable Object Files B1-Chapter 7:7.9

 8.10 Dynamic Linking with Shared Libraries B1-Chapter 7:7.10

 8.11 Loading and Linking Shared Libraries from
Applications

B1-Chapter 7:7.11

9. Exceptions and Processes

 9.1 Exceptions B1-Chapter 8:8.1 0.5 week

 9.2 Processes B1-Chapter 8:8.2

 9.3 System Call Error Handling B1-Chapter 8:8.3

 9.4 Process Control B1-Chapter 8:8.4

10. Virtual Memory

 10.1 Physical and Virtual Addressing B1-Chapter 9:9.1 0.5 week

 10.2 Address Spaces B1-Chapter 9:9.2

 10.3 VM as a Tool for Caching B1-Chapter 9:9.3

 10.4 VM as a Tool for Memory Management B1-Chapter 9:9.4

* This is just a reference to the reading material.
** Tentative duration.

Lab Topics

Introduction to Linux & Setting up the VM

C Programming Labs

Basic assembly language programming

Advanced C Programming Labs

Testing and Debugging

4

ACM / IEEE Knowledge Area Coverage

IEEE Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

AR/Digital Logic and Digital Systems 3

AR/Machine Level Representation of Data 3

AR/Assembly Level Machine Organization 6

AR/Memory System Organization and
Architecture

3

AR/Interfacing and Communication 1

PL/Basic Type Systems 2.5

SF/Computational Paradigms 3

SF/State and State Machines 3

SF/Evaluation 3

IEEE Body of Knowledge coverage

KA Knowledge Unit Topics Covered T1
hou
rs

T2
hou
rs

Electiv
e
hours

AR Digital Logic and
Digital Systems

• Overview and history of computer
architecture
• Combinational vs. sequential logic/Field
programmable gate arrays as a
fundamental combinational +
sequential logic building block
• Multiple representations/layers of
interpretation (hardware is just another
layer)
• Computer-aided design tools that
process hardware and architectural
representations
• Register transfer notation/Hardware
Description Language (Verilog/VHDL)
• Physical constraints (gate delays, fan-
in, fan-out, energy/power)

0 3 0

5

KA Knowledge Unit Topics Covered T1
hou
rs

T2
hou
rs

Electiv
e
hours

AR AR/Machine Level
Representation of
Data

• Bits, bytes, and words
• Numeric data representation and number
bases
• Fixed- and floating-point systems
• Signed and twos-complement
representations
• Representation of non-numeric data
(character codes, graphical data)
• Representation of records and arrays

0 3 0

AR AR/Assembly Level
Machine
Organization

• Basic organization of the von Neumann
machine
• Control unit; instruction fetch, decode,
and execution
• Instruction sets and types (data
manipulation, control, I/O)
• Assembly/machine language
programming
• Instruction formats
• Addressing modes
• Subroutine call and return mechanisms
(cross-reference PL/Language Translation
and Execution)
• I/O and interrupts
• Heap vs. Static vs. Stack vs. Code
segments
• Shared memory
multiprocessors/multicore organization

0 6 0

AR AR/Memory
System
Organization and
Architecture

• Storage systems and their technology
• Memory hierarchy: importance of
temporal and spatial locality
• Main memory organization and operations
• Latency, cycle time, bandwidth, and
interleaving
• Cache memories (address mapping,
block size, replacement and store policy)
• Multiprocessor cache consistency/Using
the memory system for inter-core
synchronization/atomic memory
operations
• Virtual memory (page table, TLB)
• Fault handling and reliability
• Error coding, data compression, and data
integrity (cross-reference SF/Reliability
through Redundancy)

0 3 0

AR AR/Interfacing and
Communication

• I/O fundamentals: handshaking, buffering,
programmed I/O, interrupt-driven I/O
• Interrupt structures: vectored and

0 1 0

6

prioritized, interrupt acknowledgment
• External storage, physical organization,
and drives
• Buses: bus protocols, arbitration, direct-
memory access (DMA)
• Introduction to networks: communications
networks as another layer of remote access

PL PL/Basic Type
Systems

o type as a set of values together with a set
of operations
o Primitive types (e.g., numbers, Booleans)
o Compound types built from other types
(e.g., records, unions, arrays, lists,
functions, references)
• Association of types to variables,
arguments, results, and fields
• Type safety and errors caused by using
values inconsistently given their intended
types
• Goals and limitations of static typing
o Eliminating some classes of errors
without running the program
o Undecidability means static analysis must
conservatively approximate program
behavior

Generic types (parametric polymorphism)
o Definition
o Use for generic libraries such as
collections
o Comparison with ad hoc polymorphism
(overloading) and subtype polymorphism
• Complementary benefits of static and
dynamic typing
o Errors early vs. errors late/avoided
Enforce invariants during code
development and code maintenance vs.
postpone typing decisions
while prototyping and conveniently allow
flexible coding patterns such as
heterogeneous
collections
o Avoid misuse of code vs. allow more
code reuse
o Detect incomplete programs vs. allow
incomplete programs to run

0.5 2 0

SF SF/Computational
Paradigms

• Basic building blocks and components of
a computer (gates, flip-flops, registers,
interconnections;

3 0 0

7

Datapath + Control + Memory)
• Hardware as a computational paradigm:
Fundamental logic building blocks; Logic
expressions,
minimization, sum of product forms
• Application-level sequential processing:
single thread
• Simple application-level parallel
processing: request level (web
services/client-server/distributed), single
thread per server, multiple threads with
multiple servers
• Basic concept of pipelining, overlapped
processing stages
• Basic concept of scaling: going faster vs.
handling larger problems

SF SF/State and State
Machines

• Digital vs. Analog/Discrete vs. Continuous
Systems
• Simple logic gates, logical expressions,
Boolean logic simplification
• Clocks, State, Sequencing
• Combinational Logic, Sequential Logic,
Registers, Memories
• Computers and Network Protocols as
examples of state machines

3 0 0

SF SF/Evaluation • Performance figures of merit
• Workloads and representative
benchmarks, and methods of collecting and
analyzing performance figures of
merit
• CPI (Cycles per Instruction) equation as
tool for understanding tradeoffs in the
design of instruction sets, processor
pipelines, and memory system
organizations.
• Amdahl’s Law: the part of the computation
that cannot be sped up limits the effect of
the parts that can

3 0 0

