
POPULATION ECOLOGY OF THE AMERICAN PIKA (OCHOTONA PRINCEPS) IN AN 

EXTREME ENVIRONMENT 

 
by 

CHERYL AMBER MARIE BLAIR 

BSc, University of Alberta, 1998 

 

 

 
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

ENVIRONMENTAL SCIENCE 

 

Thompson Rivers University 

Kamloops, British Columbia, Canada 

April 2019 

 
 

Thesis Examining Committee: 

 

Karl Larsen (PhD), Thesis Supervisor 

Professor, Department of Natural Resource Sciences, Thompson Rivers University 

 

Wendy Gardner (PhD), Committee Member 

Associate Professor, Department of Natural Resource Sciences, Thompson Rivers University 

 

Darryl Carlyle-Moses (PhD), Committee Member 

Associate Professor, Department of Geography and Environmental Studies, 

Thompson Rivers University 

 

Matt Reudink (PhD), Committee Member 

Associate Professor, Department of Biological Sciences, Thompson Rivers University 

 

Chris Ray (PhD), External Examiner 

Research Associate, Department of Ecology and Evolutionary Biology, 

University of Colorado 



ii 
 

THESIS SUPERVISOR: DR. KARL. W. LARSEN (PH.D) 

ABSTRACT 

Alteration of native habitat through human disturbance is generally implicated as the 

predominant cause of decline in terrestrial biodiversity. Anthropogenic forces destablilize 

critical processes such as reproductive success and dispersal of individuals; how species will 

respond depends to a large extent on the plasticity of habitat use. In this vein, habitat 

specialists may provide valuable opportunities to understand how colonization succeeds (or 

fails) in novel environments. The American pika (Ochotona princeps) is such a habitat 

specialist, occupying montane regions in western North America. This species is recognized 

as vulnerable to anthropogenic impacts (e.g. climate change) due to intrinsic characteristics 

(e.g. low thermal tolerance, low dispersal capability) that make it susceptible to local 

extirpations. In the southern interior of British Columbia, in a region that features extreme 

temperature shifts, I compared a population of pikas inhabiting a partially reclaimed mine 

site, with those found close by in natural habitat. All told, I monitored a total of 174 pikas 

from 2012-2014 to compare survival, physical characteristics, dispersal and den site 

attributes. Through mark-recapture and radio-telemetry, I found comparable survival and 

dispersal rates of pikas and almost no detectable physical differences. Investigation of under- 

talus temperatures of den sites revealed that microhabitats within the rocks largely were 

decoupled from the regional macroclimate, providing evidence of microrefugia as a 

functional buffer against macroscale climate impacts. Rock size of 1m3 and cryptogamic 

cover on talus near den entrances were positively influential to pika survival, whereas winter 

temperatures < -10°C under the talus negatively impacted survival. This study provides a 

relatively parsimonious explanation of pika persistence in atypical environments; within an 

extreme thermal environment such as in my study region, pikas appear capable of utilizing 

portions of anthropogenic habitat via microrefugia, although future longevity in a changing 

climate remains unknown. 

 

Keywords: American pika, Ochotona princeps, microrefugia, anthropogenic impacts, talus, 

microhabitat, British Columbia, climate-sensitive species. 
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CHAPTER 1 

 

THE ECOLOGICAL NICHE OF A CLIMATE-SENSITIVE SPECIES 

INTRODUCTION 

Grinnell (1917) first conceptualized the boundary of a species’ ecological niche, defining it 

as the environmental threshold that constrains the ranges of organisms according to 

physiological and psychological characteristics. Complex interactions at various spatial 

scales occur between individual organisms and their biotic and abiotic environment (Soberon 

2007; Polechova and Storch 2008); the niche encompasses not only where an individual is 

situated within the ecosystem, but also the range of conditions necessary for survival, 

reproduction, dispersal and ultimately, the persistence of the species (Hutchinson 1957; 

Morrison et al. 2006). The idea that these factors delineate locations where a species is viable 

remains the primary explanation for range boundaries (Angert 2009). 

 

Studies investigating anthropogenic disturbances and range limits have led to an improved 

understanding of the factors that limit an individual’s niche, and therefore, a species’ range 

(Ray et al. 2016). Individuals can utilize habitat in unique ways to counter marginal 

conditions, producing dispersers able to cope with atypical environments (Rodhouse et al. 

2010) that ultimately increase adaptive plasticity in populations (Levins 1968). For example, 

Ishida et al. (2016) compared Namibia desert elephants (Loxodonta africana) to their 

savanna counterparts and found that migrations of the desert animals appeared to have 

increased, decreased, or changed in direction in response to climatic factors, hunting and 

poaching. Although desert elephants are genetically similar to savanna elephants, they 

exhibit marked learned behaviour and phenotypic plasticity that has contributed to their 

survival in atypical habitat (Ishida et al. 2016). 

 

Species distributions modelled at the macroscale may accurately forecast occurrences of 

widespread species. However, predictive species-range models may be incorrect in assuming 

eventual extinction of all individuals inhabiting seemingly ‘inhospitable’ areas on the 

landscape. Microclimatic diversity within a landscape can increase the capacity of locations 

to function as diversity reservoirs. Models predicting range shifts of species have more 
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recently included the concept of “microrefugia”, as applied to populations surviving in 

unusual microclimates within the broader landscape (Rull 2009). The concept of 

microrefugia lends a more parsimonious explanation of discrepancies between observed and 

predicted population occurrences (Mosblech et al. 2011). Through the interaction of 

geographic, topographic, climatic and biological processes at a microscale, microrefugia in 

peripheral locations may provide conditions comparable to conditions experienced near the 

center of the species’ geographic range (Varner and Dearing 2014a; Ray et al. 2016). 

 

On a microscale, the heterogeneity of habitat characteristics dictates small mammal 

distributions within macrohabitats (Bellows et al. 2001). Smaller species experience finer 

spatial processes (Hannah et al. 2014): dispersal capabilities of small mammals may be 

limited as compared to large, mobile mammals, and habitat disturbances or changing climate 

may occur much more quickly than the rate at which smaller species can adapt or disperse. 

Pockets of microrefugia that offer suitable microclimates can influence the development of 

unique attributes within smaller species, thereby garnering unique responses within smaller 

species to anthropogenic pressures that increase the capacity for range expansion and thereby 

decrease the likelihood of extinction (Randin et al. 2009). 

 

Investigating microclimatic environments that are niche-specific to organisms, at finer scales 

and longer time periods, will be crucial to determine how small mammal species will persist 

in situ throughout stochastic disturbances, anthropogenic impacts and macro-scale changing 

climate patterns (Varner et al. 2014). Smith et al. (2014) investigated the paleo middens of 

two closely related species, the desert woodrat (Neotoma lepida) and the bushy-tailed 

woodrat (Neotoma cinerea) within a transition zone in Death Valley, California, and 

uncovered fundamental differences in the adaptive response of these two species in relation 

to the elevation of the site and local microclimate. As climate and habitat shifted during the 

late Quaternary, bushy-tailed woodrats were driven to extirpation due to their thermal 

constraints, along with juniper (Juniperus sp.), which served as both a food source as well as 

an indicator of the cooler and more mesic microclimate in which this species thrives. Pruitt 

(1953) studied the northern short-tailed shrew (Blarina brevicauda), and found that this 

species was constrained within its niche space by microclimatic parameters: high humidity 
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was amongst the significant predictors of shrew occupancy. Research conducted by 

Drickamer and Capone (1977) investigated two sympatric mouse specie: deer mice (P. 

maniculatus) and white-footed mice (P. leucopus). Niche separation was indicated between 

these two Peromyscus taxa based on their differential activity levels in relation to 

microclimatic parameters: the latter was active during warmer temperatures, higher relative 

humidity, and light precipitation at night. Conversely, deer mice were active under conditions 

at lower temperatures, lower relative humidity, and in the absence of night- time 

precipitation. 

 

Microclimatic variation in montane regions results from the influence of interacting 

geomorphologic characteristics, including cold-air pooling and differential wind exposure 

(Gentili et al. 2015). Pikas [Order Lagomorpha (Brandt 1855), family Ochotonidae -Link 

1797] are small, montane mammals that may utilize such microclimates within pockets of 

refugia. There are two distinct ecological niches occupied by different pika species: rocky 

terrain (talus and lava flows) or burrows in open habitats (meadows and steppe habitat) 

(Smith 2008). Despite differences in some life history aspects (e.g. reproductive strategies), 

pika species are considered vulnerable based on shared physiological characteristics: high 

thermal sensitivity, low vagility, and stochastic metapopulation dynamics (Ge et al. 2013; 

Smith 2008). For this reason, pikas are believed to be particularly susceptible to 

anthropogenic impacts and climate change. Currently, the extant ochotonids are represented 

by only a single genus (Ochotona) containing 28 species. Globally, four species are classified 

as endangered or critically endangered, with climate change implicated as the primary driver 

of extirpation (Smith and Beever 2016). 

 

The collared pika (Ochotona collaris) and the American pika (Ochotona princeps) are the 

sole ochotonids that occupy North America, and both species are rock-dwelling. The collared 

pika inhabits the tip of northern British Columbia, the Yukon, and western parts of Alaska, 

whereas the American pika inhabits a range from New Mexico and California up through to 

central British Columbia (Smith and Weston 1990). The rocky talus matrices in which these 

pika species dwell likely provide thermal microrefuges that are integral to pika survival. The 

identification of suitable pika microrefugia is difficult without using biologically relevant 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/cold-air
https://www.britannica.com/science/niche-ecology


4 
 

finer scales and observations that are specific to the physiological requirements of this 

organism (Rodhouse et al. 2017). In this vein, a habitat specialist such as the pika affords an 

excellent opportunity to study the role of microrefugia in determining habitat suitability 

across a larger-scale landscape. 

 

In this thesis I investigate a population of American pikas occupying atypical, anthropogenic 

habitat in the hot, dry southern interior British Columbia. My overarching goal was to 

understand how the ecology of these animals resembled or differed from that of allopatric 

conspecifics, including the role of microhabitat features. In the remainder of this chapter, I 

continue to set the backdrop for this work by summarizing what is known about the niche, 

ecology and physiological constraints of the American pika. I then present details on the 

study site and climate of the region. In Chapter 2, I focus on the demographics of pikas 

within my study, principally comparing survival and population viability between the two 

categories of animals (anthropogenic versus natural habitats). I also provide data collected 

through radio-telemetry that helps to better understand mortality and dispersal in these 

animals. In Chapter 3, I look more specifically at habitat features and the pika niche to 

determine if there were particular aspects of individual den sites that affected the survival of 

individuals. Chapter 4 briefly summarizes the overall results of my thesis and fits my data 

into the body of literature focusing on pikas living in atypical habitat. As well, Chapter 4 

outlines potential future research priorities and reclamation initiatives on disturbed habitat 

that can contribute to our understanding and conservation of the American pika. 

 

Study Species 

 
The American pika (Figure 1.1) is a small (150-190 g), diurnal, solitary, territorial herbivore 

that is thermally sensitive (Smith 1974a) due to a high metabolic rate, low thermal 

conductance and a low ability to dissipate heat (MacArthur and Wang 1973). Further, pika 

populations are characterized by low density, low dispersal capability and a low rate of 

reproduction (Smith et al. 2016). The American pika has twice been nominated for 

endangered status in the USA, as previous research has suggested that this species is 

particularly susceptible to a changing climate (e.g., Smith and Beever 2016). In particular. 

American pikas have elevated body temperatures (𝑥̅   = 40.1°C). The combination of these 
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Figure 1.1. American pika perched in vigilance. Photo by author. 
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characteristics have contributed to an increase in vulnerability to extirpation of this species as 

global warming occurs (Smith et al. 2016). 

 
The American pika niche is typically associated with talus slopes in cooler, high-elevation 

ecosystems, namely alpine to subalpine rocky talus in western North America (Figure 1.2). 

Open meadows that lie adjacent to rocky talus habitat support a wide variety of vegetation 

that provides forage (Smith 1974b). Harvested, stored vegetation known as “haypiles” are 

constructed from mid-July to approximately mid-October (Smith and Ivins 1983); as pikas do 

not hibernate, these caches of vegetation serve as food sources for pikas during the late 

fall/winter/early spring months (Tapper 1973 - see Figure 1.3). 

 

American pikas conceive litters before snowmelt, and timing of parturition coincides with the 

onset of vegetative growth (Smith 1980). Extreme weather conditions (late spring storms, 

accumulation of snow), lack of nutrition, or poor maternal physiological condition likely 

affect weaning success (Smith 1980). Juveniles reach adult weight within three months of 

birth and establish their own territories by fall (inclusive of haying for overwintering). Pikas 

can initiate two litters per season, but litters can be lost or resorbed, and generally a second 

litter only is successful should the first fail. Litter size does not vary with age of the female, 

with most litters commonly 2-3 kits (Smith 1980). Gestation is approximately 30 days and 

young emerge above ground at approximately 5 weeks of age (Smith 1974a). American pikas 

are highly territorial and once settled, they rarely disperse (Barash 1973). Juveniles are 

philopatric, and on average disperse approximately 50 m from the natal den (Smith and Ivins 

1983). Generally, death of an adult results in a juvenile of the same sex taking over a territory 

(Smith 1974b). 

 
The American pika has garnered much attention in terms of anthropogenic disturbance (e.g. 

Smith and Millar 2018) and have long been regarded as the indicator species for climate 

change (Beever et al 2003). Pika metapopulations are at least partially constrained by 

extinction and recolonization rates, as well as the ability of individual pikas to disperse 

(Smith and Nagy 2015). Recently, historical American pika populations have been labeled as 

extirpated from several mountain ranges in the Great Basin and Sierra Nevada of the 
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Figure 1.2. IUCN map of the American pika range in North America. The red dot indicates 

the location of this study, just outside of the previously documented interior British 

Columbian range for this species. Map modified from Smith and Beever (2016). 

(https://www.iucnredlist.org/species/geographic-range) 

http://www.iucnredlist.org/species/geographic-range)
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Figure 1.3. Top photo: American pika carrying vegetation into haypile. Bottom photo: Pika 

in haypile of Equisetum sp. Photos retrieved from Reconyx™ wildlife cameras (used for this 

study). 
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western United States, and anthropogenic pressures such as climate change have been 

implicated in the decline of these populations (Beever et al. 2003; Moritz et al. 2008). 

 

Warming temperatures may perhaps become the most crucial factor affecting the viability of 

pika populations, when less mobile montane species are expected to shift upslope, 

subsequently resulting in loss of habitat and ultimately extirpation of the species (Moritz et 

al. 2008). It is uncertain whether pikas at more northern latitudes have the same niche 

restrictions as so- called “typical” populations at lower latitudes and higher elevations 

(Varner et al. 2014), or if these animals may exhibit behavioural plasticity (e.g. adjustment of 

foraging times or microhabitat use) in response to changing conditions. More recent research 

has focused on investigating the American pika niche framed in the context of microrefugia. 

Of interest is “atypical habitat”, in which pikas have been discovered at lower elevations or 

unusual marginal locations such as abandoned industrial sites (e.g. Manning and Hagar 

2011). Microrefugia may allow climate-sensitive species such as the American pika to persist 

in habitat that, at a broader scale, appears unsuitable or atypical for this animal. Recognizing 

the ecological relevance of niche microrefugia for species survival under climate change will 

support new strategies of adaptation management in conservation biology (Lenoir et al. 

2017). 

 
Study Site 

 

My study was conducted in the southwestern interior of British Columbia, on and adjacent to 

Highland Valley Copper (hereafter HVC), an open-pit mine (active area approx. 6900 ha- 

Brick et al. 2018) located approximately 75 km southwest of Kamloops, BC, Canada (50.49° 

N, 121.04° W). The study region features predominantly within the BC biogeoclimatic zone 

of Interior Douglas-fir at lower elevations and the Montane Spruce biogeoclimatic zone at 

higher elevations (FLNRO 2018). The climax tree species in this region is Douglas-fir, 

alongside lodgepole pine, Engelmann- white spruce and subalpine fir. The study area is 

situated in a geologic volcanic region known as the Guichon Creek Batholith, within the 

Nicola Volcanic Belt (Bergey 2007). This region is semi-arid with extreme fluctuations in 
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temperature, atypical to habitat normally associated with the American pika. Climate normals 

for this region (1981-2010) show average maximum highs of +34◦C in July and average 

minimum lows of -9.1◦C in December (similar to my study years, 2012/13, Figure 1.4). 

Extreme 30-year lows of -43.9◦C, coupled with extreme highs of 40◦C characterize this 

region as seemingly unsuitable for pika persistence (Figure 1.4). Precipitation (rain) is 

heaviest in June, with an average rainfall of 47.9 mm, and December shows an average 

snowfall of about 40.8 cm (Environment Canada, Lornex Station 50’28 N, 121’01 W; 

elevation 1268 msl). Average 30-year snowfall comparison between Kamloops and Highland 

Valley Lornex weather stations is provided in Table 1.1. 

 

Past reclamation practices at HVC have largely focused on revegetation; more recently, 

reclamation plans for overburden were modified in an attempt to increase biodiversity of 

mine waste areas (Teck Sustainability Report 2012), but specific targets for pika habitat have 

not factored into this work. Of particular interest is the waste rock generated from the mine 

pits. The gullies and lesser depressions in the industrial landscape were filled with this waste 

rock and piled along the haul roads across the mine site, and pikas settled in as they would on 

natural talus (Howie 2008). Pikas were first officially detected here in 2005 by mine workers; 

following this, Howie (2008) documented pikas via presence/absence surveys. 

 

Sampling locations were selected both north and south of highway 97C based on site 

occupancy (Figure 1.5). My study animals were situated at an elevational range between 

1315-1865 m across the study area, both on site at HVC (“anthropogenic sites”), as well as 

on adjacent “natural” sites. Natural sites were characterized by talus that was composed of 

original, undisturbed rock talus matrix (Figure 1.6); and were mainly located north of the 

mine site. Other mammalian species observed to inhabit talus habitat include yellow-bellied 

marmots (Marmota flaviventris), short-tailed weasels (Mustela erminea - a main predator of 

pikas - Figure 1.7), bushy-tailed woodrats (Neotoma cinereal) and yellow-pine chipmunk 

(Neotamias amoenus). 
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Figure 1.4. Upper graph: Mean monthly temperatures during the years of my study (2012- 2014) 

garnered from two weather stations operated by HVC, the- Lornex weather station (LX) and LL Dam 

weather station (LLD). Also shown are mean monthly temperatures for a 30-year period (1981-2010) 

at LX. Lower graph: Climate min/max for this region from 1981-2010 (LX 30 yr), and during the 

years of my study (LX 2012, 2013, 2014). Available at Environment Canada: 

http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html.. 

Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

 
MONTH 

http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html
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Table 1.1. Average snowfall at Kamloops and LX weather stations, over varying yearly time 

periods (available at: http//www.climate.weatheroffice.gc.ca/climate_normals/index_e.html). 
 

 

 
 

Station Coordinates Elevation 1981- 

2010 

2012 2013 2014 

Highland Valley 

Lornex 

50°28’00”N 

121°01’00”W 

1268 m 149.9 cm N/A N/A N/A 

Kamloops 50° 42’08” N, 

120°26’31”W 

345.3 m 63.5 cm 84.8 

cm 

N/A 42.4 

http://www.climate.weatheroffice.gc.ca/climate_normals/index_e.html)


13 
 

 

 
 

Figure 1.5. Map of study area indicating sampling locations within and around the Highland 

Valley Copper mine in south central British Columbia (50.49° N, 121.04° W). Pink markers 

represent pika habitat supporting between 2-14 pikas. Blue marker indicates the approximate 

location of the HVC Lornex weather station. Red marker indicates approximate location of 

the LL Dam weather station. Inset illustrates study site location in British Columbia. Aerial 

photograph obtained from Google™ Earth. 
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Figure 1.6. Top photo: Waste Rock dump gully on-site at HVC, in which pikas are residing. 

Bottom photo. Natural pika habitat north of Highland Valley Copper. Photos by author. 
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Figure 1.7. Top photo: The short-tailed weasel (Mustela erminea) is a main predator of pikas. 

Above photo: weasel moving through natural rock talus occupied by pikas. Bottom photo: 

Weasel caught during pika trapping session, on-site at HVC. Photos by author. 
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CHAPTER 2 

 
A COMPARISON OF AMERICAN PIKA (OCHOTONA PRINCEPS) POPULATIONS IN 

NEIGHBOURING ANTHROPOGENIC AND NATURAL HABITATS 

INTRODUCTION 

The alteration and fragmentation of native habitat through human activity is commonly 

implicated as the predominant cause of terrestrial biodiversity loss (Pfeifer et al. 2014). As a 

result, reclamation of wildlife habitat has become increasingly important as a means to 

counter these losses. However, the primary short-term goals of reclamation efforts often are 

to establish vegetative cover, with longer-term objectives for wildlife lacking priority (Eaton 

et al. 2014). Closure planning of industrial/disturbed areas such as mines tends to focus on 

geotechnical elements of the landscape, including surface water, soils and vegetation 

(McKenna 2002), that invoke limited guidelines (Eaton et al. 2014). Further, simply re- 

vegetating a landscape does not necessarily result in re-colonization and establishment of 

diverse wildlife populations, nor does it ensure restoration of the original ecosystem 

condition, structure and function (Cristescu et al. 2013). 

 

Stability of wildlife populations is ensured through reproductive success and dispersal 

(Kristan 2003), processes likely to be impeded by anthropogenic modification of habitat. 

Species whose distributions are dependent on recolonization of habitat patches may appear to 

be demographically viable but may be more susceptible to anthropogenic pressures that 

would effectively wipe out subpopulations containing unique and rare combination of genes 

(Donovan et al. 1995). Thus, understanding how wildlife responds to human disturbance and 

subsequent reclamation practices will require more than broad inventory studies. 

 

Habitat specialists in reclaimed landscapes provide valuable opportunities to understand how 

the plasticity of wildlife species (or lack thereof) allows colonization of new environments. 

Populations of species that establish on these types of landscapes may be doing so due to (i) 

the creation of habitat (macro- and micro-) that intentionally or unintentionally mirrors native 
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conditions, (ii) a plastic behavioural response to conditions outside of their normal habitat 

envelope, or (iii) some combination of these two processes (Rodhouse et al. 2010). 

 

The American pika (Ochotona princeps) is a species considered to be a habitat specialist 

(Varner and Dearing 2014; Calkins et al. 2012); it is generally associated with alpine to 

subalpine rocky talus that occurs in western North America from New Mexico and California 

up through to central British Columbia (Smith and Weston 1990). This animal is a small, 

territorial herbivore that is considered thermally sensitive (Smith 1974a) and therefore 

presumed to favor talus slopes associated with cooler, high-elevation ecosystems. In addition 

to this apparent tie to a narrow range of habitats, the species also is considered vulnerable 

due to a low reproductive rate and limited dispersal (Beever 2008). 

 

Studies focused on the American pika in non-alpine areas have been limited to relatively few 

locations, and it is unclear whether patterns of pika occupation observed elsewhere (e.g. 

Bodie, CA –Smith et al. 2016) are representative of non-alpine habitats in general 

(Shinderman 2015). Recent evidence has suggested pikas are not necessarily restricted to the 

narrow bioclimatic envelope that they have been typically associated with (Simpson 2009; 

Manning et al. 2011; Shinderman 2015; Smith and Millar 2018), rather, the relative influence 

of habitat features such as microclimate at den sites appears to vary by location (Jeffress et 

al. 2013). This species has recolonized atypical environments after it has undergone locally 

extirpation, such as in the post-eruption landscape of Mt. St. Helen’s (where pikas 

recolonized under debris such as log piles - Bevers 1995) or in anthropogenic environments 

such as lower elevation rock quarries (Manning and Hagar 2011). Millar et al. (2010) suggest 

that pika populations in the Sierra Nevada and southwestern Great Basin are sustainable, 

persist in a wide range of thermal environments, and show little evidence of extirpation or 

decline; in contrast, central Great Basin pika populations appear subject to the complexity of 

metapopulation dynamics and climate change, and have shown declines or extirpations in 

some populations (Beever et al. 2003). Baseline studies of this animal in atypical 

environments, such as reclaimed landscapes, will continue to provide information into 

whether the habitat associations of this species are plastic or highly canalized. 
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To understand better the ability of the American pika to survive in altered landscapes, I 

conducted comparative research on these animals across a landscape containing both natural 

and anthropogenic habitat, within an extreme temperature environment characterized by 

long, cold winters (lows of -40◦C) and short, hot summers (highs of >40◦C). The specific 

questions I address in this chapter are: Is there a significant difference in demographic and 

individual characteristics of pikas occupying natural versus anthropogenic habitat, and (ii) 

are there differences in the life history of the animals that may reflect the two “populations”. 

To this end, I compare between natural and disturbed habitats: the survival of adult and 

juvenile pikas, weight and zygomatic width of pikas, dispersal of juveniles, and reproductive 

success of adult females. 

 

METHODS 

 
Study Site 

 
Pikas were studied within the reclaimed landscape of Highland Valley Copper (HVC), an 

open-pit mine located approximately 75 km southwest of Kamloops, BC, Canada (50.4871° 

N, 121.0444° W). Pikas first were detected within the re-distributed talus in Highmont in 

2005 (the southern portion of the mine landscape – Howie 2008), with conspecifics 

occupying natural habitat approximately 2-17 km distant. Surface developments from mining 

operations include open pits, overburden dumps, tailings ponds, infrastructure, water 

diversions, and roads. The majority of reclamation practices are done directly on tailings and 

overburden via seeding. Reclamation historically at HVC largely has been structured around 

revegetation; more recently reclamation plans for overburden are being modified to attempt 

to increase biodiversity of mine waste areas (Teck Sustainability Report 2012). Average 

climate normals in this region (1981-2010) show average maximum highs of +34◦C (peaking 

in July) and average maximum lows of -9.1◦C (December). Extreme 30-year lows of -43.9◦C, 

coupled with extreme highs of 40◦C characterize this region as seemingly unsuitable for pika 

persistence (Figure 1.4). Precipitation (rain) tends to occur heaviest in June, with an average 

rainfall of 47.9 mm, and December shows an average snowfall of approximately 40.8 cm 

(Environment Canada, Lornex Station 50’28 N, 121’01 W; elevation 1268 msl). The study 

region is within the Interior Douglas-fir biogeoclimatic zone at lower elevations and the 



22 
 

Montane Spruce biogeoclimatic zone at higher elevations (FLNRO 2018). The study area is 

situated in a geologic region known as the Guichon Creek Batholith, within the Nicola 

Volcanic Belt (Bergey 2007). My study animals were situated at an elevational range 

between 1315-1865 m across the study area. See Chapter 1 for a more detailed comparison of 

the site and weather conditions during the study years, and the precise location of the study 

animals. 

 

Mark-recapture/Demographics 

 
Using aerial photography (Google Earth™ 2012), ground surveys, previously recorded pika 

occupancy (Howie 2008), pika sightings from mine workers, and stratification for rock 

outcrops north and south of Highway 97C, I randomly selected for live-trapping 20 occupied 

talus habitat patches that were equally dispersed across the study site. Within these patches 

the locations of pikas and the elevation of their den sites were recorded using a Garmin 76C 

hand-held GPS unit with accuracies generally +/-5 metres. I laid out parallel linear transects 

on talus slopes, approximately 15 meters apart (Beever 2003; Collins and Bauman 2012) and 

survey points were established approximately 50 meters along the transect lines (Millar and 

Westfall 2010; Collins and Bauman 2012). Each point survey lasted 20 min and included 

both active searching and quiet listening; individual pikas were confirmed by direct 

observation, vocalization, and/or by searches for haypiles (Figure 2.1) or scat (Figure 2.2). A 

subsample of pikas deemed focal animals (22 collared and 20 non-collared individuals) were 

observed over daily active periods to determine an average territory size. Individual territory 

sizes were determined as an approximation, based on measurements of farthest distance 

observed of where pikas traveled within their territory through activity, foraging bouts, etc. 

Several observation periods (no less than 3/ focal pika) were conducted throughout summer 

seasons of the study at each habitat patch, during 2 active periods for pikas – early to mid- 

morning, and late afternoon to dusk. A tape measure was used to record farthest points out 

from the main haypile and these points were used to approximate area of the territory. 

 

Sites were classified as ‘natural’ when the surrounding rock matrix was undisturbed by 

human modifications. Anthropogenic (disturbed) sites involved artificial substrates such as 

riprap or waste rock dumps generated by mining activities. Other forms of human 
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disturbance such as dirt roads, logging and recreational use were not used as criteria and also 

were present within/nearby the designated “natural” areas outside the mine perimeter. Such 

human disturbances as close proximity of roads have been shown to not significantly 

influence pika habitation (Ray et al. 2016). 

 

Intensive trapping periods that occurred over 3 consecutive years allowed me to assess 

survival over the intervening time periods. Pikas were captured using Tomahawk 

(Hazelhurst, WI) model 202 collapsible live traps (Figure 2.3) encased in “weasel baffles” 

(Fig. 2.3)- an outer covering fitted around the traps, designed during the study to prevent the 

killing of pikas inside traps by weasels. After initial trap placement, the live traps were 

locked open for 1-2 weeks and repeatedly pre-baited with dry alfalfa cubes. When I 

determined that the animals were consistently visiting the traps, live-trapping sessions 

commenced in the early hours of the morning or evening. Sample sites were exhaustively 

trapped between May and October 2012 and between May and November 2013, with a final 

overwinter survival trap in June 2014 [estimated >33,600 trap hours]. Traps were checked 

once every 2.5-3 hours after setting until ambient temperatures reached 15°C (or in the case 

of evening trapping, the onset of dusk). Captured animals were admitted into a mesh 

handling bag (Figure 2.4) and marked with two Monel #1 ear tags (unique number 

combinations) and one unique color tag for observational purposes (Figure 2.5). A hair 

sample from each individual was taken for genetic analyses in a related study (Waterhouse et 

al. 2017). All told, my handling time for individual pikas once ushered into the handling bag 

was kept under 3 minutes/animal to ensure safety of the animal (Figure 2.6). 

 

Female Reproductive Success 

 
Females were inspected at the time of trapping for swollen nipples (1-2 mm; Smith and Ivins 

1983) and/or matted hair around the nipples, as evidence of lactation. Female parentage was 

determined through trapping records and direct observations; a small number of juveniles had 

their female parentage affirmed through genetic analysis. (Waterhouse et al. 2017 – 

Appendix A). Number of offspring (0, 1, >1) was calculated based on the number of 

offspring detected (visually or through live-trapping) post-emergence (on the surface) 

(Kreuzer et al. 2003). 
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Weight, Zygomatic Width and Sex Ratio 

 
Weights of individual pikas were taken to the nearer 0.5 g at each capture session 

(approximately 3 weights/season taken, late spring-late fall) using a Pesola scale; 

adult/juvenile classification by weight generally was based on a 150 g threshold (previous 

studies show 120-176 g for adults, and under 150 g for juveniles (e.g. Tapper, 1973). 

Colouration and size of the individuals also served to identify juveniles during the summer of 

its birth (Smith and Millar 2018), along with detections of juveniles emerging from den sites. 

During capture, zygomatic width measurements were taken with calipers to the nearest 0.5 

mm, as a comparison of body size). Zygomatic width measures the widest part of the 

animal’s face, from one arch to the other, and used as a proxy to compare body size Duke 

(1951). The sex of individuals was determined in the field at time of first capture and 

subsequent confirmation of a subsample (n= 10) using DNA testing via hair samples 

(Waterhouse et al. 2017, see Appendix A) verified the accuracy of these field assignments. 

 

Radiotelemetry/Mortality/Dispersal 

 
Subsamples of pikas in my study population were monitored via radio telemetry to provide 

confirmation that my live-trapping estimates of mortality were accurate. To affix radio- 

collars, live-trapped animals were ushered into a small handling bag made out of soft mesh 

and nylon/spandex (Figure 2.5). With the animals inside the mesh of the handling bag, the 

radio-collars [Holohil Ltd./Model DB-2C (adults) /PD-2C (juveniles) -both  3% of animal 

body weight] were secured around the neck (Figure 2.6). Collared individuals were 

subsequently located via telemetry every 2-3 days in conjunction with detections through 

direct observation and live-trapping. Telemetered pikas were followed throughout the 

summer season until settlement or death, at which point a GPS location was taken. Repetitive 

and stationary signals from collars, consistently located under talus over multiple successive 

checks, were considered to also reflect mortality. Collars on surviving pikas were removed 

during last trap in the fall. 

 
Juvenile pikas (young of the year) were observed, targeted, trapped and a subset 
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Figure 2.1. Top photo: Haypile on HVC site; a mix of raspberry (Rubus leucodermis) and 

Canada thistle (Cirsium arvense). Bottom photo: Haypile of Equisetum sp. on natural site. 

Photos by author. 
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Figure 2.2. Latrine (scat) pile under a rock outcrop. Photo by author. 
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Figure 2.3. Top photo: pika taking bait from a locked-open trap. Photo retrieved from 

Reconyx™ camera. Bottom photo: pika caught during trapping session with trap inside a 

“weasel baffle”. Photo by author. 
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Figure 2.4. Top photo: Pika emerging from handling bag. Bottom photo: Two Monel 

identifying tags, both with numbers. Left ear also has an additional color tag for 

observational purposes. Photos by author. 
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Figure 2.5. Pika post-handling: tagged, collared, sexed and weighed, and a hair sample taken. 

Photo by author. 



30 
 

radio- collared beginning late June to early July, as soon as emergence from the natal den 

was observed, and continued through into early August. Point of origin of the juvenile was 

considered to be the home den site of the mother, and dispersal was determined through 

either direct observation of the juvenile’s movement amongst patches or tracked through 

telemetry. The dispersal (settlement) distances of collared juvenile animals were measured as 

straight- line distances from the mother’s den site. Radio-collars were removed when 

juveniles had settled: i.e. they were consistently observed in a non-natal territory (usually by 

early September, and “haying” had begun on territory). A Kolmogorov-Smirnov test was 

used to compare the dispersal distances (categorized) of the pika offspring originating in 

natural and anthropogenic habits based on average-size territory increments (Smith 1974b). 

 

RESULTS 

 
Mark-recapture/Demographics 

 
I monitored a total of 20 patches supporting pikas over the course of this study (10 natural, 

10 anthropogenic). My observational assessments showed an average of 3,628 m2 of habitat 

per patch with a mean estimated individual territory size of approximately 572 m2, which 

agrees with previous reports of territory size for this species (e.g. Smith and Weston 1990). A 

total number of 174 pikas were captured from 2012-2014. Included in this number were 54 

adult males, 44 adult females (sex unknown n=11) and 61 juveniles. Sex-ratios for trapped 

adult animals were not significantly different in early summer and fall between the two 

habitat types (Table 2.1). Survival of adults between the anthropogenic and natural dens did 

not differ significantly over the major sample periods. Average juvenile survival over two 

summers also did not differ significantly over sampling periods, or between anthropogenic or 

natural habitat (Table 2.1). 

 

Female Reproductive Success 

 
The proportions of adult females that reproduced each summer were similar across the two 

habitat types and did not differ between years (Table 2.1). Similarly, in both 2012 and 2013, 

there was no significant difference between habitat types in the proportion of reproducing 
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Figure 2.6. Trapped pika illustrating an attached radio-collar. Photo by author. 
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Table 2.1 Demographic parameters across all field seasons 2012-2014 with comparisons 

between animals occupying anthropogenic and natural habitats. All statistical comparisons 

were insignificant at = 0.05 except for zygomatic width. a breeding females/non-breeding 

females. bdenotes #females with offspring to surface/# females with more than one offspring 

to surface. cdenotes #offspring dispersing <50 m (philopatric)/#offspring dispersing >50m. 
dnumber of juveniles dispersing varying distances across both habitats. D= K-S test statistic 

of proportions compared in dispersal distance categories e denotes juveniles holding territory 

the following year after successful settlement. 

 
Parameter Age Season Year Anthro Natural Stat Prob. 

Survival A Summer 2012 0.84 (27/32) 0.95 (36/38) χ1 = 1.97 0.61 

   2013 0.79 (27/34) 0.89 (25/28) χ1 = 1.11 0.29 

   Pool 0.82 (54/66) 0.92 (61/66) χ1 = 3.4 0.07 

  Winter 2012 0.41 (11/27) 0.33 (12/36) χ1 =0.37 0.55 

   2013 0.30 (8/27) 0.52 (13/25) χ1 =2.7 0.10 

   Pool 0.35 (19/54) 0.41 (25/61) χ1 = 0.41 0.52 

 Juv Summer 2012 0.89 1 χ1 = 2.0 0.57 

  Winter 2012 0.25 0.29 χ1 = 0.07 0.79 
  Summer 2013 0.79 0.89 χ1 = 1.11 0.29 

♀ Breedinga Aa  2012 12/7 13/3 χ1 =1.39 0.24 

   2013 12/5 13/5 χ1 =0.01 0.91 

♀Reprob A b  2012 8/4 9/4 χ1 =0.02 0.89 

   2013 8/4 8/5 χ1 =0.07 0.79 

Weight A♀  Pool 168.02±14.5g 
(n=24) 

168.8g±12.7 
(n=17) 

t37.12 =0.18 0.86 

 A♂  Pool 164.7±16.4g 
(n=32) 

166.2±15.9g 
(n=30) 

t59.9 = 0.37 0.72 

 A♂/♀  Pool 165.0±15.8g 
(n=56) 

168.3±13.6g 
(n=47) 

t94.1 =1.12 0.26 

Zygomatic A♀  Pool 24.6±0.8mm 
(n=24) 

24.5±0.7mm 
(n=23) 

t44.9 =0.57 0.57 

 A♂  Pool 25.0±0.9mm 
(n=32) 

24.5±0.8mm 
(n=29) 

t58.6 =2.44 0.02* 

 A♂/♀  Pool 24.7±0.9mm 
(n=56) 

24.6±0.8mm 
(n=52) 

t105.2 =1.17 0.25 

Dispersal Juvc  Pool 19/9 24/6 χ1 =1.1 0.29 

 Juvd  Pool 28 30 D=0.17 0.20 

Juv este   2012-13 5/14 5/16 χ1 = 0.07 0.80 

   2013-14 5/14 9/14 χ1 = 2.29 0.13 
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females having at least one offspring emerge from the den (Table 2.1). 

 
Weight, Zygomatic Widths and Sex Ratios 

 
No differences were detected in adult weights across the two categories of pikas (Table 2.1). 

Males ranged from 136-200 g and females ranged from 140-195 g. Females were comparable 

in weight to males, with no significant difference found between the sexes (Table 2.1). 

Zygomatic width was 23-26 mm with no significant difference found between the sexes in 

my study. Females showed no difference in zygomatic width across habitat type (Table 2.1), 

however, male zygomatic width differed between the habitat types (Table 2.1). Juveniles 

ranged from 70–149 g in my study, contingent on the time of the season when captured. No 

significant difference was found either year in sex ratios when comparing natural and 

anthropogenic sites (Table 2.1). 

 

Radiotelemetry/Mortality/Dispersal 

 
Twenty-two adults were radio-collared during the summer season of 2012-2013. Within the 

group of telemetered animals, all individuals that did not appear in the trapping program 

were known to have died (4 pikas), as verified either by remains (2 pikas) or stationary 

location of the transmitter within talus (2 pikas). I radio-tracked a total of 12 juvenile animals 

upon emergence from the natal den sites in 2012, subsequently radio-checking each 

individual for 9-22 non-consecutive days. Two of these animals (17%) died prior 

to settlement, reflecting the same mortality percentage in the non-collared portion of 

juveniles over the same life-history period. 

 

Successful settlement was inclusive of both telemetered and non-telemetered juveniles. 

Settlement distances ranged 24 – 224 m from the natal den (𝑥̅  = 46.4 m, SD = 50.9 m). There 

were no significant differences in settlement distances found between anthropogenic and 

natural sites for the dispersed juveniles (Table 2.1). Similarly, there were no significant 

differences in the relative proportions of anthropogenic and natural-site juveniles that settled 

and held a territory into the following spring (Table 2.1). 
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DISCUSSION 

 
The American pika has been touted as a specialized, thermally-sensitive, montane alpine 

mammal (Beever 2003; Calkins et al. 2012), yet pikas in my study appear to be occupying 

and surviving in a lower-elevation, atypical dry region in the southern interior of British 

Columbia. Moreover, this species is occupying anthropogenically-modified sites (as well as 

natural) in a region that experiences exceptionally hot summers and extremely-cold winter 

temperatures. Despite these seemingly challenging conditions, my comparison of these 

animals across the two habitats revealed that pikas were remarkably similar in nearly all 

comparisons. Overall, survival rates of adults and juveniles were comparable between the 

two habitat types during the years of my study (2012-2014). Pikas exhibited almost no 

detectable differences in demographic characteristics, with the sole exception of adult male 

zygomatic width. Subsets of radio-collared animals confirmed the validity of mark- recapture 

in investigating the demographics of the American pika. Comparable survival rates of both 

adults and juveniles (verification of efficacy of monitoring individual fates via live-trapping 

was supported through telemetry data from adults) between anthropogenic and natural 

habitats suggests these animals attain territories and denning sites of similar quality in both 

areas. 

 

Elevated body temperatures (𝑥̅  = 40.1°C) and relatively low upper-lethal temperatures (𝑥̅   

=43.1°C- Smith 1974b) reported for pikas suggest that behavioral thermoregulation is 

required to cope with summer temperatures that would otherwise be lethal to this animal 

(MacArthur and Wang 1973). The zoogeographic history of Ochotona suggests that pikas 

have been able to shift into varying habitats in response to environmental changes, via 

behavioural plasticity (Varner et al. 2014) and available microrefugia. Thus, the 

establishment of these animals in anthropogenic and lower-elevation sites in my study area is 

not altogether unexpected, as other anthropogenic or “atypical” occupied sites exist 

elsewhere in western North America (see Bevers 1995; Millar & Westfall 2010; Manning 

and Hagar 2011; Smith et al. 2016; Millar et al. 2018). Given pikas’ patch fidelity and 

obligation to talus and talus-like habitats, this research provides further evidence that pikas 

can utilize a broader array of habitats, albeit suitable microclimates being an important 

requisite. 



35 
 

Female pikas in my study achieved equal size and demonstrated similar reproductive success, 

whether occupying anthropogenic or natural habitat, indicating that individual territories used 

by the two groups of animals afforded similar resources and nesting sites. It was beyond the 

scope of this study to determine the exact litter size born to individual females, but the 

number of surviving young post-weaning suggested of comparable resources to both mother 

and young. A trade-off between energy expended and energy stored for winter thermogenesis 

and reproduction (Lima et al. 1985) occurs in summer while foraging to “hay” in preparation 

for winter or nest-building (Stafl and O’Connor 2015; Dearing 1997), and also in foraging 

during the winter (for example, on evergreen shrubs; Dearing 1997). My results suggest that 

comparable nutritional availability, caloric intake, and proximity of forage in both habitat 

types is at least on par. Assumptions of similar resource availability are further substantiated 

by a related study (Leung 2014), where accessible vegetation and haypile composition was 

assessed and compared between anthropogenic and natural habitats. Although forage 

composition differed somewhat between the two habitats, overall nutritional availability did 

not differ, illustrating dietary plasticity in this generalist herbivore which contributes to 

comparable survival and reproduction of female pikas in my study region. 

 

Similiar male pika weights in anthropogenic and natural sites also indicated that resources 

were comparable in both habitat types, yet there was a significant difference in zygomatic 

width; pikas from natural sites exhibited smaller widths. Cranial measurements are not well 

reported in the literature, but previous studies have noted that zygomatic measurements for 

American pikas are smaller elsewhere than in my study population (eg. Hafner and Smith 

2010). Research investigating body size in mammals documents selection of larger body size 

in colder climates and selection for smaller size in warmer climate; a more recent hypothesis 

has developed that predicts climate warming will cause a reduction in body size (Millien et 

al. 2006). Although I do not have historic baseline data from this region, of particular interest 

for future research would be ongoing documentation of physical characteristics of individual 

pikas in this hot summer region, tracking physical changes as the climate changes. 

Admittedly, the significance in difference could have been little more than a spurious 

correlation. Superficially, the difference in zygomatic width did not equate to a difference in 

survival rate in males between anthropogenic and natural habitats, but selection may favour 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894904/#b64
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smaller body size over time as climate warming occurs. 

 
To my knowledge, this is the first study to document dispersal of juvenile pikas using radio- 

telemetry, and although my sample of radio-collared animals was relatively small, the data 

generated supported the highly philopatric settlement patterns detected through mark- 

recapture in this study. Habitat availability and suitability appeared to be comparable in 

dispersing juveniles in both anthropogenic and natural habitats in this region, based on 

similarity of settlement distances. In general, juvenile pikas have limited dispersal 

capabilities (Smith and Ivins 1983a; Tapper, 1973; Peacock 1997) and dispersal may be 

affected by dynamics on a habitat patch with fully occupied territories, more so if 

behavioural thermoregulation is not possible via suitable refuge (Smith 1978). A distance of 

a few hundred meters may pose an impassable barrier to dispersal at lower elevations (Smith 

et al. 2016). Pikas are known to illustrate high levels of inbreeding (Robson et al. 2016); in a 

concurrent genetic study, pikas on my study landscape exhibited division into subpopulations 

despite sometimes very short distances between habitat patches (Waterhouse et al. 2017). 

Possible explanations included effects of industrial roads or high summer heat on dispersal, 

but the pattern also demonstrated the high degree of philopatry typical for this animal. 

Overall, dispersal is on par in this population of pikas in both anthropogenic and natural 

habitat and comparable to populations studied elsewhere (e.g. Smith and Millar 2018). 

 
The similarities I report for pikas in anthropogenic and natural habitat patches are more 

striking given that reclamation objectives in this area did not specifically target pika 

colonization. Waste rock dumps were not strategically placed to create habitat for the pikas; 

however, the animals inhabiting them appear similar to those in anthropogenic habitat in 

almost all of the parameters that I investigated. Overall, the present study suggests that even 

within an extreme thermal environment, pikas are capable of successfully utilizing at least 

some portions of anthropogenic habitat, and reclamation specifically aimed at supporting this 

animal (something not present in my study site) may increase even more so the viability of 

the colonizing populations. Outwardly, it would seem unusual that pikas are occuring in 

either of the native or anthropogenic habitats in this lower-elevation region due to extreme 

temperatures that are reached in both summer and winter. However, my results indicate that 
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(i) no differences are detectable between pikas occupying the two types of habitat, at least in 

the basic population parameters I measured, and (ii) these parameters in general did not differ 

substantially from those reported in more southern populations, despite the extreme climate 

of my study region. Although my comparisons included more than simple measurements of 

abundance, the length of this study (i.e. 2 years) is insufficient to allow a more confident 

statement about the long-term persistence of the animals occupying either of the two habitat 

types. Still, the data presented herein suggest that even species considered ‘specialists’ have 

the potential to do equally well on reclaimed and atypical landscapes. 
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CHAPTER 3 

 
THE AMERICAN PIKA (OCHOTONA PRINCEPS): MICROREFUGIA 

CHARACTERISTICS ACROSS AN ATYPICAL LANDSCAPE 

 

INTRODUCTION 

 
Grinnell (1917) first conceptualized the boundary of a species’ ecological niche, defining it 

as the environmental threshold that constrains the ranges of organisms, according to their 

physiological characteristics. Since then, the concept of the niche has been more broadly 

defined, incorporating descriptions of how an organism or population responds to all stimuli, 

such as the distribution of resources and competitors (Hutchinson 1957). Yet, many studies 

examining the ecological niche have focused largely on the influence of regional climate in 

dictating the distribution of species. This may fail to give accurate predictions when 

interpreted at finer geographical scales, i.e. where individuals within a single population 

might experience their immediate surroundings differently (Suggitt et al. 2011). Rowe et al. 

(2014) surveyed small mammals from 2008-2010 (pikas, woodrats, mice, voles, etc.) in 

California, using data that were collected in the 1920s on the historical ranges of species (ex. 

Grinnell 1924), and illustrated that populations were impacted differently across regions by 

shifting climate, and that range shifts were not predictable in relation to changing climate in 

lower elevation species. Thus, climate modelling of species’ distributions has been criticized 

for failing to integrate necessary components such as dispersal, adaptation and behavioural 

plasticity of a species (Renn and Schumer 2013; Varner et al. 2014). 

 

Microhabitat (microrefugia) has been an overlooked concept in determining what the 

response of a species is or will be to changes in its niche space (Lenoir et al. 2017). Growing 

evidence suggests that microrefugia are relatively stable and buffer species against variability 

in climate or other environmental conditions (Varner et al. 2014). For example, mountainous 

regions feature refugia in which cooler microclimates enable local survival of species at 

relatively low latitudes (Stewart et al. 2010). Those animals that can behaviourally regulate 

body temperature through habitat selection may be less vulnerable to climate shifts than 

previously thought (McCain and King 2014). Understanding how and why species are 
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limited by climate and other factors using fine-scale data is important in assessing the 

ecological and physiological effects of disturbance and anthropogenic impacts, and how 

microhabitat can offer species a viable option to adapt in situ (Yandow et al. 2015; Horner- 

Meyer. 2015). 

 

The American pika has long been touted as a sentinel species for the effects of climate 

change on a montane mammal (Smith and Beever 2016; Erb et al. 2011). Pikas possess many 

characteristics that have been forecasted to expedite local population extirpations should 

temperatures continue to increase (Parmesan 2006; Smith et al. 2016). These features 

(temperature sensitivity, low density, low dispersal capability, and low rate of reproduction) 

interact to make pikas vulnerable to population extirpation and therefore subsequent regional 

extinction (Smith et al. 2016), mostly due to a relatively elevated body temperature (mean = 

40.1°C) and relatively low upper-lethal body temperatures (mean = 43.1°C; Smith 1974a). 

Hyperthermia and death are reported to occur at moderate ambient (25.5–29.4°C - 

MacArthur and Wang 1973; Smith 1974a) or moderately low (>-10°C; Beever et al. 2010) 

temperatures. 

 

Recent work has documented the loss of historical pika populations from several mountain 

ranges in the Great Basin of the western United States and has suggested that anthropogenic 

influences (e.g. climate warming) are likely responsible for the observed decline (Beever et 

al. 2003). Similarly, anthropogenic climate change has been implicated in the contraction of 

pika distribution in the Sierra Nevada (Moritz et al. 2008; Manning and Hagar 2011). Yet, 

there are locations throughout pika distributions (Smith et al. 2018) where these animals 

appear to be persisting through atypical environmental conditions, outside of their previously 

described typical niche. Whether pikas can adapt or modify their behaviour to contend with 

anthropogenic disturbance and changes in climate, across various biogeographic locations, 

still is unknown. 

 

To better understand how the American pika is surviving in locations seemingly unsuitable 

for this species, I conducted research on animals across a low-elevation, anthropogenically 

disturbed landscape at the edge of this species’ central northern range, located in atypical 

habitat within the semi-arid southwestern interior of British Columbia. In Chapter 2, I 
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compared the demographics of two subpopulations of these animals, one occupying a 

relatively warm anthropogenic landscape, and the other in adjacent, more natural habitat. I 

found no detectable differences between the two groups of animals, suggesting the pikas in 

the latter habitat were successful at utilizing the disturbed landscape. In this chapter I 

combine the data on all individuals and their den sites across the entire landscape and address 

the following questions: (i) are there substantial differences in individual den characteristics 

(i.e. rock size, insol, temperature under talus) of pikas across this site and (ii) are these den 

characteristics a predictor of adult and juvenile survival. 

 

METHODS 

 
Study Area 

 
I conducted my study approximately 75 km southwest of Kamloops, British Columbia, near 

the Highland Valley Copper Mine site (50.48° N, 121.04° W), across study sites at elevations 

between 1365m- 1885 m ASL. The study site occurs within British Columbia’s Interior 

Douglas-fir biogeoclimatic zone at lower elevations and the Montane Spruce biogeoclimatic 

zone at higher elevations (FLNRO 2018). Precipitation here is limited with an average annual 

amount of 393 mm (Environment Canada) falling heaviest in June. Interestingly, this region 

is semi-arid with extreme fluctuations in temperature; average climate normals in this region 

(1981-2010) include average maximum highs of +34°C (with extreme highs of 40°C) in July 

and average minimum lows of -9.1°C (with extreme lows of -43.9°C) in December, 

suggesting this region would not readily support pika populations due to the poor thermal 

tolerance of this species. Pikas were first detected here by mine workers in 2005. 

Subsequently, Howie (2007) conducted a presence-absence study on the Highmont side of 

HVC (southern portion of the mine). Additional details on the study site are provided in 

Chapter 1. 

 

Using aerial photography (Google Earth™ 2012), ground surveys, previously recorded pika 

occupancy (Howie 2008), pika sightings from mine workers, and stratification for rock 

outcrops north and south of Highway 97C, I randomly selected 20 talus habitat patches that 

were dispersed across the study site and likely supported pikas. Locations of pikas and their 
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den sites (and elevation) were confirmed using a Garmin 76C hand held GPS unit with 

accuracies generally +/-5 metres. I laid out parallel linear transects on talus slopes, 

approximately 15 meters apart (Beever 2003; Collins and Bauman 2012) and survey points 

were established approximately 50 meters along the transect lines (Millar and Westfall 2010; 

Collins and Bauman 2012). Each point survey lasted 20 min and included both active 

searching and quiet listening within that period; individual pikas were confirmed by direct 

observation, vocalization, and/or by searches for scat or haypiles. Average territory size of 

individual pikas at lower elevations have been documented as approximately 400 -600 m2; 

this was confirmed through observations in my study, increasing confidence that all occupied 

sites were detected (e.x. Smith and Weston 1990; Rodhouse et al. 2010). Live traps 

(Tomahawk model 202, Hazelhurst, WI) enclosed in weasel-baffle cages (Chapter 2) were 

placed at each den site near the main haypile of the occupant pika. Captured animals were 

ushered into a mesh handling bag and marked with two Monel #1 ear tags (unique number 

combinations) and one unique color tag for observational purposes. Sample sites were 

exhaustively trapped between May and October 2012 and between May and November 2013, 

with a final overwinter survival trap in June 2014. Additional details on live-trapping are 

provided in Chapter 2. 

 

Temperature/Climate 

 
I randomly chose and equipped a subsample of 45 den sites from May 2013 to May 2014 

with four temperature data loggers (thermochron iButton™ data loggers, model 1921G, 

Maxim Integrated Products, USA). I used these to record temperature at four-hour intervals 

at the following locations: subsurface (80cm into rock matrix perpendicular to the slope 

angle, as per Beever et al. 2010), ambient (approximately 1m above the rock surface), shaded 

surface (talus rock surface level, placed under shade), and unshaded surface (talus rock at 

surface level, fully exposed to solar radiation). To compare regional temperatures, I obtained 

ambient average monthly temperatures from a HVC weather station installed in the Lornex 

area of the mine site. Of the 180 deployed data loggers, 148 functioned properly (82%) until 

their retrieval in the spring of 2014. Five den sites had multiple failures and/or 

disappearances (the latter likely removed by pikas or other mammals) and 3 of the den sites 

became vacant during summer and winter of 2013. Missing values due to lost or 
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malfunctioned ibuttons were filled in using multivariate imputation for continuous data 

(JMP® 13.0.0, 2016 SAS Institute Inc; Lee and Carlin 2010; Shane Rollins, pers. comm.). A 

matrix of Pearson’s r tests revealed high autocorrelation between all 4 locations of ibuttons 

across all den sites (all Ps<0.0001). Therefore, two temperature thresholds were selected as 

putative predictors of den quality: (i) days above 25.5°C below talus, and (ii) days below - 

10°C under talus, following previously identified temperature thresholds for American pikas 

(Jeffress et al. 2013; MacArthur and Wang 1974; Smith 1974a). I averaged the coldest and 

warmest months to illustrate the buffering effects of the talus against extreme temperatures. 

 

Habitat Parameters + Survival 

 
Habitat measurements were recorded for each pika den site within a 20m circumference 

around the main haypile/talus entrance. Burnham and Anderson (2001) recommend that 

biological, rather than statistical, considerations direct the choice of combinations of 

variables to include in models; therefore, habitat variables measured for this study were 

selected based on previous pika literature (e.g. Smith et al. 2016; Varner et al 2014; Manning 

and Hagar 2011; Beever et al. 2003) along with personal observations of these animals. 

 

At each individual densite I measured slope using a Suunto PM-5 Clinometer. Aspect was 

measured with a Silva Ranger 515 compass, with a bearing taken through center of main 

haypile/den entrance. Insol is an index of slope and aspect (Varner et al. 2014) that estimates 

potential solar exposure at a particular site (Jeffress et al. 2013). Following Jeffress et al. 

(2013), I calculated insol as sine (slope)  cosine (aspect). The resulting values ranged from 

1 to -1, with steeper north-facing slopes represented with larger positive values 

(‘‘northness’’) and steeper south-facing slopes represented with larger negative values 

(‘‘southness’’). Visual estimates of rock size on individual pika territories were averaged 

between 2 observers for precision, with occasional tape measurements used to confirm 

precision. Rocks were assessed under 4 diameter classes; > 1m3, 1m3, 40- 60 cm3 (beachball) 

and <40 cm3(baseball) size. Lichen/moss/fungi (cryptogamic) cover and bare ground was 

recorded as a visual estimate/individual pika territory, also taken between 2 observers at each 

den site. Several of the habitat parameters showed high correlation (all Ps> 0.001) and thus 3 

variables were ultimately selected for subsequent analyses as most likely relevant to 
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pika survival (e.g. Varner et al. 2014): cryptogamic communities, insol, and rock 1m3. 

 
Analyses 

 
I examined survival of individuals biannually (summer and winter) by modeling binary 

survival data [alive (1) or dead (0)] in response to habitat variables (predictors). I used a 

nominal regression model assuming a binomial distribution with a logit link. Candidate 

models were tested using the habitat variables and their additive or interactive combinations, 

and were compared following Akaike’s Second-Order Information Criterion (AICc) for small 

sample sizes. The most parsimonious model was determined as outlined in Burnham et al. 

2002. Akaike weights (wi) were used to examine the relative importance of variables. Models 

with > 10 Δi were omitted from the final candidate set of models (Burnham and Anderson 

2000). Models were verified using Receiver Operating Characteristic (ROC) and Area Under 

the Curve (AUC) between fitted survival probabilities and observed occurrence (Hughes and 

Bhattacharaya 2013). Model-averaged estimates and unconditional standard error were 

calculated from the top candidate models. All analyses were conducted in JMP® 13.0.0 

(2016 SAS Institute Inc). 

 
RESULTS 

 
 

I monitored a total of 20 patches supporting pikas over the course of this study), and live- 

trapped a total of 174 individual pikas from 2012-2014 (estimated +33,600 trap hours). 

Included in this number were 54 adult males, 44 adult females (sex unknown n=15) and 61 

juveniles. 

 

Temperature/Climate 

 
Figure 3.1 shows the average daily temperatures over the coldest (December) and hottest 

(July) months at all four ibutton stations during 2013. The coldest mean ambient temperature 

measured in winter by ibuttons in 2013/14 was -34.5°C on December 7. On that day, the 

temperatures under the talus averaged -16°C (+/- 7.6°C) (Figure 3.1). 
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Figure 3.1. Temperatures at pika den sites near Highland Valley Copper, British 

Columbia, as recorded in 2013 using ibuttons placed at three locations at each 

den site: under talus (0.8m), ambient (1.5 m above ground), surface (on surface 

at den site in shade), and additional data from Highland Copper weather station 

of daily air temperatures. Above: mean maximum in July (hottest month) 

(n=36); Below: mean minimum temperatures in December (coldest month) 

(n=32). 
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Habitat Parameters + Survival 

 
There was no consistency in variables being linked to survival across my four time periods 

(Table 3.1). A model involving the interaction of the habitat metrics of lichen, rock, and days 

below talus below -10℃ (winter 2013/2014) showed the highest accuracy in predicting pika 

survival (ROC =0.91, Table 3.1); overall, all candidate models for this season and year were 

very close in AICc values (Δi <3.03) indicating they were roughly equivalent in predicting 

pika survivability. 

 

Increased proportion of 1 m3 -sized rocks in the talus matrix positively influenced pika 

survival (β= 0.194±0.14SE), increasing percentage of cryptogamic communities (LMF) 

positively influenced pika survival (β= 0.05±-0.06) and increasing number of days below 

talus below -10°C negatively influenced pika survival (β= - 0.08±0.15- see Table 3.2). 

 

DISCUSSION 

 
This research investigated the characteristics of pika den sites in an environment subject to 

substantial climatic fluctuations. My study revealed that cryptogamic communities, 

combined with larger rock size and the buffering effect of talus matrices against harsher 

summer and winter climates, were features of pika den sites linked to survival. The 

occupancy of pikas in microrefugia likely is dictated by several factors, including 

temperature, precipitation, and elevation (Millar and Westfall 2010; Rodhouse et al. 2010; 

Wilkening et al. 2011; Varner et al. 2016), and the influence of these parameters appear to 

vary by location in studies elsewhere (e.g. Jeffress et al. 2013). Some aspects of habitat 

singled out in this study were similar to those reported for pikas in other regions, such as 

talus rock size. Alternatively, insol (previously described as a predictor of pika presence - 

Varner et al. 2014) did not effectively predict survival in this study region over my study 

periods. 

 
Data in the summer of 2013 indicated that number of days with above talus temperatures 

above 25.5°C were not a factor linked to pika summer mortality; temperature below the talus 

stayed much cooler (Figure 3.1) - well below the conventional upper lethal body threshold 
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Table 3.1. Final candidate set of nominal logistic models for survival at individual 

pika den sites across study years. Variables include percent cover of rock 1m3 (R), 

number of days below talus below -10°C (T), Insol (I) and percent of cryptogamic 

vegetation cover (LMF). Null corresponds to an intercept only model. 

AICc=Akaike’s information criterion, ∆i = the difference between the model 

indicated and the best model, k= number of modeled parameters, Wi = Akaike 

weights, ROC = Receiver Operating Characteristic. 

 
Season/Year Model k AICc ∆i wi ROC 

 

Winter 2013 

 

LMF 

 

1 

 

42.01 

 

0 

 

0.28 

 

0.67 
 R + LMF 2 42.96 0.95 0.18 0.70 
 R*T 3 43.03 1.02 0.17 0.78 
 R 1 44.1 1.97 0.10 0.63 
 R+LMF+T 3 44.5 2.49 0.08 0.75 
 R*LMF*T 7 44.7 2.69 0.07 0.91 
 T 1 44.85 2.84 0.07 0.61 

 R*LMF 3 45.01 3.03 0.06 0.698 

Summer 2013 NULL 0 34.5 0 0.19 0.50 

 T 1 34.5 0 0.19 0.60 
 T+LMF 2 35.5 1 0.12 0.69 
 I 1 36.19 1.69 0.084 0.63 
 LMF 1 36.25 1.75 0.08 0.55 
 R+T 2 36.7 2.2 0.06 0.62 
 R 1 36.8 2.3 0.06 0.51 
 T+I+LMF 3 37.6 3.1 0.04 0.79 
 I+LMF 2 37.8 3.3 0.037 0.71 
 I+R 2 38.6 4.1 0.02 0.62 
 R+LMF 2 38.6 4.1 0.02 0.51 
 T+LMF+I+R 4 40.03 5.53 0.01 0.74 
 LMF*T*I 7 49.6 15.1 0 0.79 

 LMF*I*R 7 50.3 15.5 0 0.74 

Winter 2012/13 L 1 219.1 0 0.58 0.60 
 R+LMF 2 220.8 1.7 0.25 0.61 
 NULL 0 222.4 3.3 0.11 0.50 

 R 1 223.7 4.6 0.06 0.53 

Summer 2012/13 NULL 0 132.7 0 0.50 0.50 
 R 1 134.7 2 0.19 0.52 
 LMF 1 134.7 2 0.19 0.51 
 R+LMF 2 136.7 4.1 0.07 0.51 
 R*L 3 138.8 4.2 0.06 0.51 
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Table 3.2. Model-averaged estimates of parameters included in the top candidate models for 

Winter 2013. Variables include percent cover of rock 1m3 (R), number of days below talus 

below -10°C (T) and percent of cryptogamic vegetation cover (LMF). 
 

 

 
 

Parameter Model-averaged 

Estimate (β) 

Unconditional standard error 

INTERCEPT -0.63 1.16 

LMF 0.05 0.06 

R 0.194 0.14 

T -0.076 0.15 
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temperature associated with this animal. Previous research on this species has mainly focused 

on ambient regional temperatures in the summer months (Beever et al 2003; Smith et al. 

2016) because of the limited thermal tolerance demonstrated by this animal (Smith 1974a). 

Interstitial temperatures within talus may be dependent processes other than heat-transfer at 

the surface (Varner et al. 2014), such as cold-air pooling and cold air drainage (Millar and 

Westfall 2010). The use of periglacial habitats (including volcanic rock talus such as that 

illustrated throughout my study site) by pikas is exemplified by research in the Sierra Nevada 

and western Great Basin (Manning et al. 2011). These types of habitat include deeper taluses 

and subsurface ice/water sources that provide a more stable microclimate (Ray et al. 2012). 

In the Columbia River Gorge, U.S., Varner et al. (2016) found a 30°C difference between 

under talus and ambient air temperatures, and the daily variabilities of the matrices were one- 

half to one-third those of ambient air. This illustrates the buffering capacity of talus matrices, 

in particular at lower elevations where microclimates are milder and less variable than typical 

alpine habitat. In turn, this suggests that these atypical locations may actually be more ideal 

refuge for this species under climate change, as compared to higher elevation sites (Varner et 

al. 2014). The warmest locality of any long-term investigation of pikas is documented at 

Bodie, California (Peacock and Smith 1997; Smith et al. 2016), where summer temperatures 

regularly exceed the upper lethal pika body temperature, yet Bodie has supported a pika 

metapopulation for over 100 years (Seppanen et al. 2012). These findings are congruent with 

the results of my study as presented in Chapter 2, which reveal that atypical locations of 

pikas near their northern latitudinal limits, including “habitat” created anthropogenically, 

appear to support viability of pika populations. My study contributes to the growing evidence 

that pikas are able to persist in regions that feature macroclimatic ambient temperaturesmuch 

higher than the documented upper lethal threshold temperature for these animals, potentially 

via pockets of microrefugia. 

 

Survival data obtained from my study site (Chapter 2) revealed that most pika mortality 

occurred during the winter periods. Much lower temperatures were recorded during this 

period across my study region than studies conducted elsewhere (e.g. Smith and Millar 2018) 

and are considerably lower than temperatures considered lethal for this animal. However, it 

was not possible to know precisely where the animals were situated and/or what temperatures 
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they were truly experiencing, implying that either there were warmer pockets of microrefuge 

within the talus that I could not measure in this study, or that pikas are notably better at 

thermoregulating in colder temperatures than previously believed. Pikas are somewhat 

adapted to the cold, but in years of low snowpack (i.e. insulative protection) it has been 

postulated that they may expend high levels of energy thermoregulating, resulting in higher 

levels of mortality (Ray et al. 2012). Frequent melt-freeze cycles, coupled with a lack of 

insulating snow and exposure to windshear, could potentially cause ruined haypiles or cause 

acute cold stress (Yandow et al. 2015). However, Smith and Millar (2018) found that the 

winter season (in particular those years with low snowpack) did not result in lower pika 

densities in Bodie, California the following summer (the winter average daily ambient 

temperature was -17°C). Further research is needed to determine thermotolerance in this 

species, as well as assessments of microrefugia and microclimates under talus. 

 
Cryptogamic communities were a top interactive predictor of pika survival in my study, 

likely reflecting a cooler, moister microclimate, and deeper older, talus fields. Lichens also 

indicate the age of rock structures (McCune et al. 2017) and reflect the spatial stability 

associated with talus slopes (rock glaciers - Charbonneau, unpublished), which could be an 

indication of stable, suitable pika habitat. Similar to lichens, mosses tend to grow in moister, 

shadier conditions, and they also function as a nutrition source for pikas; Varner and Dearing 

(2014b) illustrated that moss represented more than half of plant consumption in low- 

elevation pikas in the Columbia River Gorge, U.S.A., providing forage within the safety or 

thermal refuge of the talus. 

 

Rock clasts that compose the talus matrix also were a top predictor of survival in my study. 

Larger rocks likely relate to the size and abundance of crevices and retreats that provide 

access to the subterranean environment, and/or reflect the subsurface structure. Through 

gravitational sorting, talus slope development can lead to a deep stockpile of rock clasts, up 

to many meters in depth (Millar and Westfall 2010). American pikas do not excavate 

burrows (Franken and Hik 2004), nor are they physically able to defend themselves against 

predators; talus composed of larger rocks provides an abundance of crevices suitable for 

denning, moving, overwintering, and hiding, as well as perching platforms to survey for 



54 
 

predators (Millar and Westfall 2010). 

 
 

The relationship between habitat disturbance, climate and pika distribution appears complex. 

The persistence of many low-elevation populations of pikas in “anthropogenic”, “marginal” 

or “atypical” habitats (Manning and Hagar 2011; Millar et al. 2013; Rodhouse et al. 2010; 

Shinderman 2015) indicates that pikas may be more versatile than previously considered. 

Recent research on pika microrefugia in non-alpine environments, either far removed from 

high elevations or occurring in anthropogenic habitat (rock waste dumps, quarries, etc.), 

suggests these environments may be less “atypical” for this animal than previously thought. 

Studies have documented recolonization in these marginal areas long after local extirpations, 

illustrating that recolonization might require a longer period of time than afforded by short- 

term research (Millar and Westfall 2010). For example, 12-14 years after the 1988 Mt. St. 

Helen’s eruption, pikas recolonized in and around the blowdown zone, often in unusual spots 

such as under log debris (Bevers 1995). In my study area, pikas have colonized an 

anthropogenically-disturbed landscape generated through the mineral extraction process of a 

mining operation that began in 1962. My research provides only a snapshot in time of pika 

persistence on this atypical landscape, however, anecdotal evidence of pikas inhabiting the 

waste rock was documented circa 2005, 7 years before my study began (Howie 2008). 

Although it is unknown how long these animals have been colonizing the disturbed sites, 

other work (Chapter 2) has revealed that these animals appear to be successfully reproducing. 

In this case, population viability may be attributed to the availability of suitable subterranean 

habitat throughout summer and winter, rather than a physiological adaptive response to 

warmer or colder temperatures at macroscales. 

 

In the spirit of Grinnell (1917), the niche is described as a close adjustment of the organism 

“in various physiological and psychological respects to a narrow range of environmental 

conditions”. Grinnell proposed the importance of conducting exhaustive research in the 

general range of species to determine habitat factors that are common (and atypical) to all 

locations where a species exists. In this vein, the data collected in my study region adds to 

the growing amount of literature illustrating that the American pika is able to occupy 

seemingly atypical habitats that superficially do not represent classic alpine/sub-alpine 
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habitat. Given that the region in this study experiences extreme high and low temperatures 

that far exceed previously-suggested thermal thresholds for this species, my results reaffirm 

the importance of further research to fully understand the significance of pika microrefugia. 
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CHAPTER 4 

CONCLUSION 

The overarching goal of my research was to investigate if anthropogenically-altered habitat 

was comparable to natural habitat in supporting viable American pika populations within the 

dry southern-interior British Columbia. The data I collected has implications on dispersal, 

climate change, and anthropogenic disturbances that influence the survival of this species in a 

region where temperatures can reach extreme levels in both summer (+40°C and higher) and 

winter (as low as -43.9°C). The agenda of the study was narrowed down to the following 

objectives: (1) investigation of American pika population demographics and viability on an 

anthropogenically-disturbed mining site as compared to an adjacent “natural” landscape, and 

survival of the American pika in relation to putative habitat variables, including below- talus 

temperature. I focused on pika survival and dispersal in both “habitats” via mark- recapture, 

dispersal of the animals via radio-telemetry, and (3) habitat features of the pika niche in 

relation to predicting survival in individuals. 

 

The most notable results of my thesis were: 

 
• there were no significant differences in survival of pikas occupying natural vs. 

anthropogenically-disturbed habitat; 

• mortality occurred predominantly over winter season, in contrast to predicted mortality as a 

result of high summer temperatures; 

• talus appeared to buffer external temperature effects within the ground-cover rock matrix, 

creating a microclimate substantially warmer (winter) or cooler (summer) as compared to 

ambient temperatures (macroclimate); 

• pikas at this latitude comparably disperse as compared to their southern counterparts 

• factors that may contribute to the survival of pikas in this region include a buffering capacity 

of the talus matrix from low/high ambient temperatures, possiblyinfluenced by rock size and 

cryptogamic vegetative growth on the talus. 
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My results suggest that anthropogenically-created habitat is mitigating temperature effects at 

least as well as adjacent natural talus patches in the southern interior of British Columbia. 

 

Microrefuge availability and use by the American pika may mitigate the effects of extreme 

temperatures previously considered lethal to the animal, pending sufficient resources are in 

close proximity. Talus properties of rock size and vegetative cover appears to work in 

tandem to buffer the effects of harsher ambient temperatures and allows for survival and 

viability in this population of pikas. Reclamation seemingly would have the potential to 

create suitable habitat so as to mitigate the effects of a future changing climate and 

deleterious effects that may result. Pikas also may exhibit behavioural plasticity outside of 

their “normal” condition, as is evidenced by their use of atypical habitat in this study and 

elsewhere, such as under log debris (Bevers 1995) or rock quarries (Rodhouse et al. 2010). 

Investigating and quantifying the American pika in “atypical” habitat will further contribute 

to identifying microrefugia requirements encompassed within the niche of this species, and 

perhaps expand the definition of habitat requirements and range for the American pika. 

 

MANAGEMENT IMPLICATIONS 

 
In related research (Waterhouse et al. 2017 – Appendix A), genetic discontinuity was 

revealed in my study population. Pikas occupying artificial habitat exhibited significantly 

higher relatedness estimates; at a finer scale, pairwise estimates of differentiation and 

migration rates suggest little gene flow may be occurring among sites across the sampling 

region. Two possible mechanisms that contributed to this were isolation of habitat pockets on 

the mine-site surrounded by haul roads, and/or the extreme summer heat limiting dispersal 

distance. Therefore, reclamation initiatives on industrial landscapes that create continuity via 

artificial dispersal routes (corridors) between pika habitat patches (artificial or natural) will 

likely promote gene flow amongst pika patches. 

 

In the summer of 2013, exploratory drill testing for copper within my study site caused 

alterations in drainage patterns and flooding that eliminated at least three denning sites. 

Elsewhere, construction of an access road through a small forest stand removed trees that 

provided shade cover for pika den sites. As the American pika is not considered at-risk in 
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British Columbia, these and other land-use impacts on the species do not require redress. 

Still, my study suggests that reclamation of pika habitat may not be overly complicated nor 

expensive. Reclamation and management plans should include retaining or planting native 

tree species to provide shade on den sites in summer that may be useful at lower (hot) 

elevations, and also may contribute to maintaining snowpack (insulation) until temperatures 

warm in spring. This would also provide shade during summer and therefore, cooler dispersal 

routes that may contribute to a higher success of territory acquisition by juveniles. As well, 

understory vegetation adjacent to talus slopes provide nutrition, as pikas do not forage far off 

of talus. Leaving rock piles and overburden unseeded and allowing native vegetation to grow 

in patches around and amongst talus can support not only pikas but other species sharing the 

same habitat, such as marmots and woodrats. 

 

LIMITATIONS AND FUTURE RESEARCH 

 
Studies of wildlife populations on reclaimed habitat are critical to understanding the complex 

issues involved in returning disturbed land to viable habitat, whether the end target is a 

particular ecosystem, wildlife community and/or focal species. Where possible, this work 

should involve a comparison of populations living on the reclaimed land with that of natural 

habitat. However, maintaining support for long-term wildlife research is difficult, resulting in 

short-term studies (such as that herein) that may not detect long-term trends or shifts in 

demographics. These assessments should involve more than simple abundance or density 

estimates, such as the more detailed comparison presented herein; at the same time, intense, 

short term data such as mine should not preclude longer term monitoring that will fully 

reveal population dynamics. I suggest conducting research that is long-term, assessing 

populations from birth to death of individuals and subsequent documentation of extirpation- 

recolonization events. 

 

Alongside direct disturbance to pika talus habitat (mining, forestry), there is evidence that 

other pressures also affect pika viability. The effects of livestock grazing on pika foraging 

habitat quality has not been well studied, but there is evidence that livestock has a negative 

effect on pika persistence (Millar 2011). Compaction of soil and overgrazing can lead to 

changes in plant community structure, thereby potentially reducing pika foraging habitat 
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(Zhu et al. 2016). In an earlier study conducted at my sites (Leung et al. 2014), plant species 

located in areas at the base of talus slopes were also found stored in haypiles, suggesting 

foraging of pikas is not restricted to talus patches. This region of BC provides an excellent 

study area for future research to determine how pika foraging habitat may be affected by 

livestock, as ranches and grazing land inundate the region. 

 

Lastly, microclimate appears to play an integral role in the American pika’s ability to cope 

with local temperatures beyond previously described lethal thermal limits for this species. 

Although data collected in my study illustrated the buffering capacity of the talus, I was 

constrained in several ways. Monetary and time restrictions allowed only one “group” of 

ibutton placement at selected den sites. Placement of sensors deeper into the talus (a 

challenging feat) perhaps would have made for interesting comparisons. Other researchers 

also have encountered difficulties in achieving consistent and meaningful placement of 

sensors in crevice depths (Rodhouse et al. 2017; Wilkening et al. 2011). It was beyond the 

scope of this study to determine exactly when an individual died during the winter, and thus I 

could not equate specific mortalities to specific temperatures (or other causes of winter 

death). Physiological tolerances of pikas, when exposed to freezing winter temperatures, are 

unknown (Smith and Millar 2018); evidence is mounting that winter cold stress may 

contribute more to American pika extinction risk than summer heat stress (Rodhouse et al. 

2017; Smith and Nagy 2015; Schwalm et al. 2016). Investigation of how variation in 

environmental parameters amongst localities contributes to differences in survival rates of 

this species based on regions (Jeffress et al. 2013) will fill gaps in understanding this species. 

Future research should investigate American pika temperature thresholds, as temperature 

study on this species still invokes Smith et al.’s (1974a) 25.5 °C benchmark as an upper 

lethal threshold. My research contributes further to knowledge of the range of conditions that 

the American pika can occupy and remain viable, namely, on a landscape that has undergone 

severe anthropogenic impacts and that also experiences extreme temperature shifts. 
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Abstract Natural resource extraction can represent a major 

human modification to the landscape. Habitat reclamation 

is becoming an increasingly important strategy for abating 

the loss of biodiversity associated with these developments; 

however, the demographic and genetic consequences of 

colonizing artificial habitat remain unknown in many 

species. Here, we investigated the genetic consequences of 

landscape modifications for the American pika (Ochotona 

princeps) relative to two major developments in British 

Columbia, Canada: a large open-pit copper mine (Highland 

Valley Copper) under partial reclamation and a  

bisecting major highway (97C). We assessed microsatellite 

genotypic data for 109 individuals across 15 sites located 

either within the mine on artificial habitat or on adjacent 

natural habitat both north and south of the highway. There 

were no significant differences in levels of heterozygosity, 

allelic richness or inbreeding between natural (n = 7) and 

artificial sites (n = 8). However, pikas residing on artificial 

habitat exhibited significantly higher relatedness estimates. 

Bayesian clustering analyses revealed two distinct genetic 

units corresponding to north and south of the highway, with 

further substructure detected in the south. Likewise, high  

 

Electronic supplementary material  The online version of this 

article (doi:10.1007/s10592-017-0930-1) contains supplementary 

material, which is available to authorized users. 

 

*   Michael A. Russello  

 michael.russello@ubc.ca 

1 Department of Biology, University of British Columbia,  
Okanagan Campus, 3247 University Way, Kelowna,  
BC V1V 1V7, Canada 

2 Department of Natural Resource Sciences, Thompson Rivers  
University, 900 McGill Road, Kamloops, BC V2C 0C8,  
Canada 

 
genetic friction was detected in the central region of the 

area, largely corresponding to the highway and modified 

landscape associated with the mine. At a finer scale, 

pairwise estimates of differentiation and migration rates 

suggest little gene flow may be occurring among sites across 

the sampling area, with some evidence for directional 

migration from artificial to natural sites. Overall, artificial 

habitat has been successful in promoting occupancy for 

American pikas, however, barriers to gene flow likely 

associated with resource extraction and road construction 

limit connectivity across the landscape. 

Keywords  Ochotona princeps · Fragmentation ·  

Dispersal · Landscape genetics · Habitat modification ·  

Mining · Reclamation 

Introduction 

There is a diverse array of research and knowledge on how 

habitat alterations influence wildlife populations (reviewed 

in Saunders et al. 1991 and more recently in Keyghobadi 

2007). Fragmentation of habitat can cause major 

impediments to dispersal (Baguette et al. 2003; Buchmann 

et al. 2013), having disproportionate effects on some taxa, 

such as small mammals (Sauvajot et al. 1998). Reduced 

dispersal can hinder metapopulation dynamics (Fischer and 

Lindenmayer 2007), leading to reduced resilience in the 

face of ecological stress. Furthermore, barriers to dispersal 

may limit the potential of a species to shift its range in 

response to climate change (Parmesan and Yohe 2003). 

Habitat modifications leading to reductions in population 

size can also negatively impact genetic diversity (Frankham 

1996), which may influence a species’ ability to locally 

adapt to changing environments (Sgrò et al. 2011). 

Vol.:(0123456789)1 3 

Reclamation activities are increasingly applied to 

disturbed landscapes in an attempt to improve the suitability 

of the land to wildlife, with or without a specific target 

species in mind (Ruiz-Jaen and Aide 2005). For example, 

many mining operations are now heavily involved in 

reclamation, often with the end goal of mitigating the initial 

disturbance and improving habitat recolonization by plants 
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and animals (Eaton et al. 2014). Such activities could 

represent an important mechanism for reducing impacts to 

biodiversity on multiple scales. However, we have little 

direct evidence of the potential consequences colonizing 

artificial habitat may have on the resulting demographic 

structure of wildlife populations on these landscapes. In 

particular, the juxtaposition of local, artificial habitat and 

neighboring natural habitat may influence the extent and 

direction of gene flow. Moreover, anthropogenic landscape 

features (e.g., roadways) commonly associated with these 

areas may lead to further habitat fragmentation. 

Understanding how ecological processes act within 

reclaimed landscapes is an important step forward in our 

efforts to improve the resiliency of wildlife populations. 

Species with narrow habitat requirements that are able to 

colonize human-modified environments may provide good 

opportunities for investigating the relationship between 

demography, population genetics, and landscape 

modifications. The American pika (Ochotona princeps) is a 

small lagomorph which has shown a narrow tolerance range 

for ambient temperature (Smith 1974; Hafner and Sullivan 

1995; Beever et al. 2010; Stewart et al. 2015). This species 

is patchily distributed in rocky, talus-type habitats across 

mountainous areas throughout western North America from 

central British Columbia and Alberta, Canada, south to the 

Sierra Nevada in California and east to New Mexico, USA. 

In some instances, American pikas have colonized 

reclaimed mining landscapes, most notably in Bodie, 

California, USA (Peacock and Smith 1997a, b). The 

fragmented nature of their habitat and limited dispersal 

ability (Henry et al. 2012; Castillo et al. 2014; Robson et al. 

2016) has propelled the American pika as a focal 

mammalian species for studies of metapopulation 

dynamics, island biogeography, and source-sink dynamics 

(Peacock and Smith 1997b; Moilanen et al. 1998; Kreuzer 

and Huntly 2003; Beever et al. 2013). 

In this study we investigated the genetic consequences of 

landscape modifications on the American pika relative to 

two major developments in British Columbia, Canada, a 

large open-pit copper mine under partial reclamation and a 

bisecting major highway. We collected microsatellite 

genotypic data for individuals sampled at sites within and 

adjacent to the mine both north and south of the highway, 

and employed site- and landscape-level analyses to quantify 

levels of variation and connectivity across this 

humanmodified landscape. 

Materials and methods 

Study site 

Highland Valley Copper (HVC) is located approximately 54 

km southwest of Kamloops, BC (Fig. 1a). The original mine 

was commissioned in 1962, although mineral explorations 

in the area date back to 1954. Originally, three mines 

operated in the Highland Valley. In 1986, they were 

amalgamated into one mine, which is now one of the 

world’s largest open-pit copper mines. Currently, mining 

operations occupy approximately 6200 ha (Freberg and 

Gizikoff 1999). Surface developments from the operation of 

the mine include open pits, waste rock dumps, tailings, 

infrastructure, water diversions, and roads. Several natural 

and anthropogenic features punctuate the landscape. The 

Highland Valley runs east to west through the study site 

representing an approximate 300 m change in elevation with 

a seasonal stream (Witches Brook) at the bottom. 

Additionally, Highway 97C was completed in 1990 running 

along the bottom of this valley and bisects the HVC mine. 

Approximately 1320 vehicles use this highway daily, with 

peak hours between 5 and 8 am and 4–8 pm (British 

Columbia Ministry of Transportation and Highways 2009). 

Major mining operations in the section of HVC north of 

the highway ceased in 1982 while the southern section 

remains active. Extensive reclamation activities at HVC 

were initiated in the late 1980s (Freberg and Gizikoff 1999) 

and have largely been structured around revegetation and 

lake remediation. Revegetation goals include: the 

establishment of forage for cattle, native shrubs and trees for 

wildlife browse, and conifers for wildlife corridors 

(Bloodgood et al. 1998). More recently, reclamation plans 

have been modified to increase biodiversity of the mine 

(Teck Resources Limited 2012). These plans have never 

specifically identified American pikas as a target species, 

but the presence of a population across the reclaimed 

landscape was first observed by mine workers around 2005, 

and then formally documented by Howie (2007). The 

closest natural population of American pikas is adjacent to 

the mine property within 0.5 km. The elevation of pika-

occupied sites in the mine (1350–1550 MSL) is comparable 

to occupied surrounding sites (1350–1850 MSL). 

Sampling 

This study is part of a larger project investigating the 

population ecology of pikas both within and near the HVC 

operating area (Blair and Larsen unpubl.). Sampling 

locations were selected on both natural (n = 7) and artificial 

(n = 8) habitat north and south of Highway 97C based on 

site occupancy. Pika-occupied sites were initially located by 

using aerial mapping and local knowledge to identify rocky  
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Fig. 1  a Map of study area indicating sampling locations within and 

around the Highland Valley Copper mine in south central British 

Columbia. See Table 1 for site descriptions. Green diamonds represent 

sites with natural habitat while red squares represent sites with artificial 

habitat. Topographic lines show 100 m changes in elevation and 

highway 97C is shown. Gridlines show 0.05° changes in latitude and 

longitude. Two large open pit mines are visible at (−121.04, 50.59) and 

(−121.04, 50.45). Darker areas represent wooded areas whereas lighter 

areas represent cleared areas from mining or other human activities; 

talus is not visible at this scale. Aerial photograph obtained from 

Google™ Earth. b Genetic friction map computed across American 

pika sampling locations. The degree of genetic friction is indicated by 

the inset contour lines and color (red indicates a relative increase in 

genetic differentiation per unit of geographic distance). Points indicate 

relative locations of sampling sites as shown on the site map. (Color 

figure online) 

areas of both natural and artificial habitat. Intense searching 

on the ground was then conducted to identify individual 

pika territories through direct observation of the animals 

and/or their hay piles. Pika territories were considered to be 

in artificial habitat when in waste rock dumps and/or riprap 

from road construction (Fig. 2a). All other sites were 

considered ‘natural’ and represented talus patches in a 

relatively undisturbed state (Fig. 2b). Sites were 

exhaustively trapped between April and October 2012 and 

between April and November 2013, allowing for the 

identification of individual pika territories. Pikas were 

captured using Tomahawk (Hazelhurst, WI) model 202 

collapsible live traps in accordance with BC Ministry of 

Forests, Lands and Natural Resource Operations wildlife 

permits KA12-78714 and KA13-86652, and Animal Ethics 

Protocol #100,102 (Thompson Rivers University, BC). All 

habitat patches within a 500 m radius were considered part 

of the sample site and were measured using a range finder 

and tape measure to approximate the total area of habitat for 

each site. A GPS coordinate was taken at each individual 

territory and all GPS points within the 500 m radius were 

averaged to obtain site coordinates. 

To determine the age class of captured animals, we 

combined observational data with estimates of mass using a 

spring scale and cranial diameter using calipers. Individuals 

with a mass under 150 g and cranial diameter under 2.5 cm 

were categorized as juveniles (informed by Smith and 

Weston 1990); all such individuals were generally trapped 

emerging from their natal nest and were considered young 

of the year. To eliminate resampling individuals, each pika 

was marked with two Monel #1 ear tags (unique number 

combinations) and one unique color tag. A small tuft of hair 

was plucked and stored in a coin envelope for subsequent 

genetic analysis. 

Genetic data collection 

DNA was extracted using the Macherey–Nagel NucleoSpin 

Tissue kit (Macherey–Nagel GmbH & Co. KG, Duren, 

Germany) and manufacturer’s protocols. Eleven 

polymorphic microsatellite loci were used to genotype each 

sample (Supplemental Table 1; Peacock et al. 2002; 

Peacock and Kirchoff, unpublished report). Conditions for 

PCR amplification followed Henry et al. (2012) including 

one additional locus (Ocp 10) that was not previously used, 

but was amplified under the same touchdown PCR 

protocol. PCR products were co-loaded and run on an ABI 

3130XL DNA automated sequencer (Applied Biosystems, 

Foster City, CA) with GeneScan™ 500  LIZ® size standard. 

Genotype calls were made using GeneMapper 4.0 (Applied  

a b 
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Biosystems, Foster City, CA). To assess allele-scoring 

error, 40% of the samples were re-amplified and re-

genotyped independently and compared to the original 

scores. 

Sex was determined for each sample by the selective 

coamplification of an allosomal-linked locus (SRY) and an 

autosomal control locus (Ocp 10) as described by Lamb et 

al. (2013). Scoring was conducted by running the PCR 

product on a 1.5% agarose gel containing 2.5% SYBR Safe 

(Invitrogen, Carlsbad, California). 

The genotypic data were examined for evidence of large 

allele dropout and null alleles using Microchecker (Van 

Oosterhout et al. 2004). All loci were tested for deviations 

from Hardy–Weinberg expectations (HWE) in each sample 

site using an exact test implemented in Genepop 4.0 

(Raymond and Rousset 1995;  Rousset 2008). Linkage 

disequilibrium was tested between all pairs of loci in each 

site using the exact test of Guo and Thompson (1992) as 

implemented in Genepop 4.0. Type I error rates for tests of 

linkage disequilibrium and departure from HWE were 

corrected for multiple comparisons using the sequential 

Bonferroni method (Rice 1989). 

Site-level analysis 

Sex ratios (M:F) were calculated for each site based on the 

molecular sexing data. We tested for even sex ratios using a 

chi-squared (χ2) goodness-of-fit test and the chisq. test 

function in R version 3.3.1 (R Core Team 2015) between 

the number of males and females for all artificial and natural 

sites, respectively. Unbiased expected heterozygosity  

(He) was calculated using arlequin 3.5 (Excoffier and Lischer 

2010) for each population. Allelic richness (AR) was 

estimated using a rarefaction method described by Leberg 

(2002) to account for biases caused by unequal sample sizes 

as implemented in hp-rare v1.0 (Kalinowski 2005). 

The inbreeding coefficient (Fis) was calculated for each 

site and tested for statistical deviations from zero using  

10,000 permutations in Genetix (Belkhir et al. 2004). Pairwise 

relatedness was calculated between all samples at each site 

using the estimator developed by Queller and Goodnight 

(1989) and tested for significance using a permutation test 

with 1000 replicates in Genalex (Peakall and Smouse 2006). 

Heterozygosity, rarefied allelic richness, site-level 

relatedness, and Fis were compared between natural and 

artificial sites using a two-tailed t test assuming unequal 

variances using the t test function in R. 

Landscape-level analysis 

The presence of discrete genetic units was assessed using a 

Bayesian clustering method implemented in Structure 2.3.4 

(Pritchard et al. 2000). An admixture model with correlated 

allele frequencies was used with a run length of 1,000,000 

MCMC replicates after a burn-in period of 500,000. The 

most likely number of clusters (K) was determined by 

varying K from 1 to 17 with 25 iterations per value of K and 

implementing the ΔK method (Evanno et al.  

2005) using Structure harveSter (Earl and VonHoldt 2011). 

additional population structure was assessed by rerunning 

the Structure analysis for each resolved genetic unit separately 

using the same parameters but varying K from 1 to the 

number of sampling sites in the resolved genetic unit plus 2. 

An Analysis of Molecular Variance (AMOVA) was 

performed in Genalex using the resolved genetic groups from 

the Structure analysis in addition to the natural/artificial 

classification to determine the degree of genetic 

differentiation explained by these groupings and tested for 

significance using a permutation test with 1000 replicates. 

The level of genetic differentiation between pairwise 

comparisons of sites was estimated using θ (Weir and 

Cockerham 1984) and tested for significance using 10,000 

permutations as calculated in Genetix (Belkhir et al. 2004) 

and corrected for multiple comparisons using the false 

discovery rate correction (Benjamini and Hochberg 1995). 

To test for a pattern of isolation-by-distance (IBD), a matrix 

of genetic distances (θ) was compared to a matrix of 

Euclidean distances using a Mantel test implemented in the 

iSolation by DiStance Web Service (Jensen et al. 2005) with default 

parameters and tested for significance using 1000 

permutations. This analysis was repeated using the same 

parameters, but using only sites north or south of highway 

97C, respectively. Additionally, to examine the possibility 

of spatially variable IBD patterns, we first constructed a 

genetic similarity matrix of (1−θ) between all pairwise 

comparisons of sites. We then used this genetic similarity 

matrix to construct a non-stationary genetic friction map 

displaying the relative genetic divergence per unit of 

geographic distance as implemented in localDiff 

(DuforetFrebourg and Blum 2014) using 4 simulated 

neighbors at a distance of 0.1 and 100 posterior replicates. 

The direction and magnitude of contemporary gene flow 

was assessed using a non-equilibrium Bayesian method 

implemented in bayeSaSS v. 3 (Wilson and Rannala 2003). A 

run length of 10,000,000 MCMC replicates with a burnin 

period of 1,000,000 replicates was used, sampling the chain 

every 100 iterations. To evaluate consistency, the program 

was run five times with a different random seed. Given the 

recovered structure in the dataset (see Results below), we 

grouped sites for this analysis as follows: north natural, 

north artificial, south natural, and south artificial. 

Significance was assumed when the 95% credibility set 

[mean ± 1.96 × standard deviation (sd)] did not encompass 

zero, as recommended by the developers (Wilson and 

Rannala 2003). 
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Results 

Data quality 

A total of 109 pikas were sampled from 15 sites, 8 artificial 

and 7 natural, with an average sample size of 7.3 animals 

per site (Table 1). Our habitat assessment showed an 

average of 4117 m2 of habitat per site with a mean territory 

of approximately 590 m2. These parameters agree with 

previous reports (Smith and Weston 1990) indicating our 

sampling was likely representative of the total population at 

these sites. Of these samples, 37 were unambiguously 

assigned as juveniles, 66 were assigned as adults, and the 

remaining 6 were indeterminate. The overall dataset 

contained 1.0% missing genotypic data, with no sample 

having missing data at more than 3 loci. Independently 

genotyping 47 random samples showed a 1.4% allelic 

scoring error rate, which is within reasonable expectations 

for the use of hair as a genetic source material and is not 

expected to skew population genetic analyses (Smith and 

Wang 2014). There was no evidence for large allele dropout 

or null alleles at any sampling sites with the exception of 

Ocp 15, which showed evidence of null alleles at four sites 

(HFGR, Relic_1, SGS, and FHF). Following sequential 

Bonferroni  

 

Site Area n M:F Type He AR Fis rxy 

BBB 2120 6 1.0 Artificial 0.582 2.21 −0.007 0.363* 

BLD 9800 6 5.0 Artificial 0.603 2.32 −0.179 0.394* 

BRCC 1200 4 3.0 Natural 0.675 2.48 0.254* 0.072 

BRCH 2200 6 0.5 Natural 0.707 2.58 0.018 0.028 

BSDE 195 3 2.0 Artificial 0.618 2.35 0.200 0.111 

BSDG 7000 5 1.5 Artificial 0.604 2.27 0.008 0.283* 

EC 1800 3 2.0 Natural 0.530 2.20 0.270* 0.210 

FHF 10,960 13 1.2 Natural 0.654 2.45 0.083 0.143* 

HFGR 1740 14 1.3 Artificial 0.590 2.24 −0.038 0.248* 

HNR 1285 6 0.5 Artificial 0.601 2.30 0.021 0.206* 

Relic_1 8000 16 1.7 Natural 0.596 2.31 0.073 0.209* 

Relic_2 1800 4 0.3 Natural 0.601 2.34 0.018 0.180* 

SGE 5800 7 0.8 Artificial 0.638 2.40 −0.025 0.143* 

SGS 4720 12 3.0 Artificial 0.557 2.14 0.024 0.262* 

TG 3135 4 0.3 Natural 0.594 2.31 0.022 0.180* 

Table 1  Sample locations, 

approximate patch size ( m2), 

sample sizes (n), and genetic 

diversity metrics for the 15 

sampling sites 

Sex ratios are expressed in the number of males per female (M:F), type indicates either natural talus or 

artificial habitat. Unbiased expected heterozygosity (He), rarified allelic richness (AR), inbreeding 

coefficient (Fis), and relatedness (rxy) are shown for each site. Significance (<0.05) is shown by an asterisk 

for Fis and rxy 
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Fig. 2  Photograph depicting typical artificial habitat (a) contrasted 

with natural habitat (b) in the Highland Valley Copper mine. Artificial 

habitat consisted of rock dumps generated from mining activities or 

road construction. Relatively undisturbed talus patches were 

considered natural habitat 

corrections, no locus deviated from HWE or showed 

evidence of linkage disequilibrium. Given the lack of a 

consistent trend in the evidence for null alleles across sites, 

all loci were retained for further analysis. 

Site-level genetic analysis 

The average sex ratio (M:F) was 1.9 (SD 1.5) for artificial 

sites and 1.3 (SD 1.0) for natural sites (Table 1). There was 

no significant difference between the number of males and 

females on either natural sites (χ2 = 5.43, df = 7, p = 0.61) 

or on artificial sites (χ2 = 5.00, df = 6, p = 0.54). Site-level 

heterozygosity ranged from 0.530 (EC) to 0.707 (BRCH), 

while AR ranged from 2.14 (SGS) to 2.58 (BRCH). Sitelevel 

relatedness ranged from 0.028 to 0.394 and was 

significantly greater than expected under random mating for 

11 of 15 sites (Table 1). Inbreeding estimates ranged from 

−0.179 to 0.270; 2 of the 15 sites exhibited inbreeding 

estimates significantly greater than 0. There was no 

difference in mean genetic diversity estimates between 

natural and artificial sites for He (t = 0.965, df = 7.694, p = 

0.82), AR (t = 1.816, df = 9.996, p = 0.95), or Fis (t = 1.034, 

df = 11.628, p = 0.84). Relatedness was significantly higher 

at artificial sites (mean = 0.251, SD 0.098) than natural sites 

(mean = 0.146, SD 0.071; t = −2.396, df = 12.580, p = 

0.016). 

a 

Landscape-level genetic analysis 

The Structure analysis revealed evidence for K = 2, 

corresponding to clusters of sites north and south of 

highway 97C (ΔK = 507.9; Fig. 3a). Further analysis did not 

reveal additional genetic units in the north, but resolved 

three southern genetic units (ΔK = 73.7; Fig. 3b). The two 

natural sites (Relic_1 and Relic_2) grouped together with an 

artificial, admixed site (SGE). Two additional artificial sites 

(HNR and HFGR) grouped together, while one artificial site 

(SGS) formed a largely distinct cluster from the other 

southern sites. The AMOVA results showed the north/south 

divide of highway 97C consistently explained the greatest 

amount of genetic variation, and the natural/ artificial 

demarcation explained the least (Table 2). While all 

grouping scenarios were significant, the four genetic 

clusters resolved by the Structure analysis were the most 

explanatory followed by the natural/artificial grouping 

when the north/south divide was added to the hierarchical 

structure (K = 4). 

Significant genetic differentiation was found for 35 of 

105 of the pairwise site comparisons of θ (Table 3). A weak 

but significant pattern of IBD was also detected (r2 = 0.080, 

p = 0.009) where genetic distance increased with geographic 

distance when considering all sites. This pattern did not hold 

when only considering sites north (r2 = 0.003,  
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Fig. 3  Structure bar plots averaged over 25 iterations showing the (ΔK = 73.7). No further genetic subdivisions were resolved within the genetic 

division (a) between sites north and south of highway 97C northern genetic unit 
(ΔK = 507.9) and (b) in the south only when analyzed independently  
Table 2  AMOVA results showing 

the distribution of genetic variation 

explained by different hierarchical 

classification schemes 

The Structure clusters (K = 2) represent the north/south divide of highway 97C, while the Structure clusters (K = 

4) takes into account the observed substructure in the south. Natural/artificial (K = 2) groups sites by habitat 

type, while natural/artificial (K = 4) includes groupings by habitat type divided into north and south of 

highway 97C. 

Table 3  Pairwise site comparisons of genetic differentiation (θ) for American pikas within and around Highland Valley Copper and highway 97C 

 BLD BRCC BRCH BSDE BSDG EC FHF TG HFGR HNR Relic_1 Relic_2 SGE SGS 

BBB 0.234 0.160 0.115 0.117 0.169 0.178 0.163* 0.152 0.253* 0.224 0.210* 0.177 0.165* 0.191* 

BLD  0.131 0.168 0.116 0.080 0.253 0.134* 0.194 0.200* 0.209 0.228* 0.255 0.215* 0.268* 

BRCC   0.048 0.132 0.064 −0.005 0.070 0.059 0.118 0.131 0.097 0.107 0.107 0.216* 

BRCH    0.092 0.109 0.080 0.037 0.080 0.096* 0.053 0.097* 0.110 0.043 0.102* 

BSDE     0.084 0.174 0.131 0.103 0.147 0.110 0.124 0.099 0.103 0.210 

BSDG      0.175 0.121* 0.137 0.161* 0.174 0.195* 0.188 0.163 0.211* 

EC       0.121 0.127 0.188 0.194 0.149 0.167 0.114 0.217 

FHF        0.046 0.142* 0.105* 0.141* 0.156* 0.092* 0.202* 

TG         0.186* 0.152 0.181* 0.143 0.152 0.261* 

HFGR          0.024 0.108* 0.055 0.092* 0.151* 

HNR           0.088* 0.023 0.063 0.094* 

Relic_1            0.042 0.017 0.178* 

Relic_2             0.039 0.157* 

SGE              0.115* 

*Values that are statistically significant after correction for false discovery rate, Pcritical < 0.015 

p = 0.402) or south (r2 = 0.087, p = 0.122) of highway 97C. 

The genetic friction map resolved a localized area of 

disproportionately high genetic differentiation in the central 

region of the study area largely corresponding with 

landscape modification associated with HVC and highway 

97C (indicated in red; Fig. 1b). 

There was no genetic evidence of migration between the 

northern and southern genetic units. Within these genetic 

units, 7.6% (SD 3.8%) and 24.8% (SD 6.7) of pikas residing 

on natural sites in the north and south, respectively, were 

estimated to be recent migrants from adjacent artificial sites. 

No significant migration from natural to artificial sites was 

detected in either region. 

Discussion 

In this study, we investigated genetic variation and 

connectivity within and among sites occupied by American 

pikas across a human-modified landscape. We detected 

evidence that American pikas are influenced by habitat 

modification at both site- and landscape-level spatial scales, 

the nature of which may have implications for 

 Among  
groups (%) 

Among sites within 

groups (%) 
Within sites (%) Significance 

Structure clusters (K = 2) 5.7 10.5 83.8 <0.001 

Structure clusters (K = 4) 6.7 8.7 84.6 <0.001 

Natural/artificial (K = 2) 0.9 13.4 85.7 <0.005 

Natural/artificial (K = 4) 6.0 9.0 85.0 <0.001 
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(Smith 1980; Moilanen et al. 1998), which may have 

potential genetic consequences. For example, American 

pika-occupied sites in ore dumps in Bodie, California 

averaged 2.49 alleles per locus (Klinger and Peacock, in 

prep), similar to the levels reported for artificial sites here 

(AR = 2.33). These values are substantially lower than those 

reported by studies that used partially overlapping loci 

within natural habitat in the range core in Nevada (AR = 4.4; 

Meredith 2002), and Oregon (AR = 5.7; Castillo et al. 2014). 

It is important to note, however, that our study occurred 

towards the northern range margin of the American pika; 

theory predicts that levels of within-population genetic 

diversity declines towards range peripheries (Lesica and 

Allendorf 1995; Durka 1999; Eckert et al. 2008). As a case 

in point, levels of allelic richness and heterozygosity 

detected in the current study were similar to those reported 

at natural sites at the northern range margin in Tweedsmuir 

South Provincial Park in British Columbia (AR = 2.8, He = 

0.62; Henry et al. 2012). Consequently, we cannot 

disentangle the relative impacts of fine-scale landscape 

modification from broader-scale range-wide patterns in 

interpreting the low levels of within-site genetic variation in 

and around HVC. 

Additionally, we saw no difference in either 

heterozygosity or allelic richness between artificial and 

natural sites possibly owing to the limited sample sizes 

associated with such a fine-scale assessment or a lack of 

significant demographic perturbation associated with 

development. There was, however, a significant increase in 

relatedness on artificial sites. Artificial sites were originally 

formed by mining activities (1962 or newer). Given their 

relatively contemporary origin, these sites were likely 

colonized much more recently than surrounding natural 

sites, and are therefore potentially subject to founder effects 

(Mayr 1963; Nei et al. 1975). Moreover, the artificial sites 

show some evidence of isolation, exhibiting both detectable 

levels of genetic divergence from and unidirectional 

migration towards natural sites, which may have contributed 

to the elevated levels of relatedness. 

The evidence of directional migration from artificial to 

natural sites also has implications for metapopulation 

dynamics in this system. Peacock and Smith (1997b) found 

that dispersal in American pikas is resource dependent, 

where the primary resource is available habitat, and 

dispersing individuals generally settle on the first available 

territory. Moreover, immigration patterns in American 

pikas are largely a function of local demographic processes 

of birth rates and habitat saturation (Kreuzer and Huntly 

2003). Habitat saturation can be highly variable, but can 

occur even in artificial habitat in a mine setting (Smith 

1980). In this context, the artificial sites studied here may 

have a lower carrying capacity, spurring directional 

movement towards more natural settings. As a case in point, 

preliminary analyses indicate significant differences of both 

thermal and vegetative characteristics between our artificial 

and natural sites. Both surface and subsurface temperatures 

at American pika territories on artificial habitat were 

significantly more variable than their natural counterparts, 

and ambient temperatures tended to be higher on artificial 

habitat (Spilker, unpublished data). Additionally, there were 

marked differences in the plant (forage) communities 

between the artificial and natural territories, due in part to 

the types of species used in the reclamation process. 

However, nutritional (i.e., nitrogen) composition did not 

notably differ in the plants appearing in haypiles at the two 

territory types (Leung, unpublished data). These thermal 

and vegetative differences could alter habitat quality for 

American pikas on artificial sites and, in turn, influence 

local metapopulation dynamics and patterns of gene flow as 

has been found in other well-studied pika populations 

(Moilanen et al. 1998). Ongoing ecological assessment of 

American pikas at our study site could further elucidate 

metapopulation dynamics in the region and help determine 

the degree to which variable habitat quality may play a role. 

On a broader scale, we resolved extensive genetic 

structure associated with landscape features. We found 

evidence for a significant genetic break in this system, 

corresponding to north and south of the highway, 

respectively (Fig. 3). Moreover, the central region of the 

study system bisected by the highway also constitutes an 

area of high genetic friction (Fig. 1). An increase in genetic 

structure from reduced connectivity is a central prediction 

of the genetic effects of roads on wildlife (Balkenhol and 

Waits 2009), and can occur over relatively short timespans 

(Martínez-Cruz et al. 2007). However, the degree of genetic 

impact is species- and context-specific as exemplified by the 

lack of genetic structure detected in the pygmy rabbit 

(Brachylagus idahoensis), another small bodied lagomorph 

with a presumed limited dispersal ability (Estes-Zumpf et 

al. 2010). While this study was conducted over a similar 

geographic scale and across comparable landscape 

impediments such as highways, creeks, and reservoirs, the 

study area contained no mining activity or associated 

reclaimed habitat. 

At a finer level, three genetic units were detected south of 

the highway, one of which was comprised of a single site, 

SGS, that formed a unique genetic unit despite close 

proximity to site SGE (550 m). This distance is well within 

the American pika dispersal capacity reported elsewhere 

across the range (maximum distances between 2 and 10 km; 

Hafner and Sullivan 1995; Peacock 1997). Interestingly, 

SGS is the only site completely surrounded by intense 

mining activity (Cheryl Blair, personal observation). 

Although direct mining activities may have contributed to 

the isolation of SGS, the additional structure detected south 

of the highway may be the result of differing sources or  
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timing of colonization of newly created habitat with 

landscape modifications subsequently limiting gene flow. 

This hypothesis could be tested in the future with broader 

sampling of potential source populations to the south. 

There are several natural geographic barriers to gene 

flow that may account, in part, for the genetic structure 

observed around the mining site. The highway lies at the 

bottom of a valley representing an approximate 300 m 

change in elevation, with a small seasonal creek at the 

bottom. Previous research indicates that both topographic 

relief (Henry et al. 2012) and water bodies (Castillo et al. 

2014) can significantly inhibit pika movement, making 

natural geographic boundaries a possible alternative 

explanation for the north/south genetic division. However, 

this would only account for the north–south genetic division 

and not the degree of genetic structure observed in the south 

nor the pattern of genetic friction across the landscape since 

no other natural barriers to gene flow were observed. 

Additionally, the degree of topographic relief previously 

shown to inhibit American pika dispersal was far more 

extreme than anything found around HVC (Henry et al. 

2012; Robson et al. 2016). Future research could potentially 

disentangle the influence of natural and anthropogenic 

barriers to gene flow by using a larger sampling of the 

American pika genome and coalescence-based genetic 

analyses to determine if the development of observed 

genetic structure was concurrent with human modifications 

of the landscape. 

In summary, we found evidence that landscape 

modifications have likely influenced the distribution of 

genetic variation within this study system, documenting 

several of the expected patterns of fragmentation on small 

mammals (Gaines et al. 1997). Specifically, we detected 

site-level changes in genetic characteristics, a slight but 

significant degree of genetic differentiation of American 

pikas inhabiting artificial sites, and significant impacts on 

genetic structuring and migration that were likely associated 

with landscape modifications. These alterations could 

influence metapopulation dynamics, including responses to 

future environmental stressors. In general, it appears that 

inhabiting artificial habitat might predispose some species 

to develop fine-scale genetic structure due, in part, to the 

colonization patterns of the newly available area. 

Additionally, by its nature, artificial habitat is generally in 

close proximity to other landscape modifications; in this 

study, the artificial habitat sites were bisected by a major 

highway. These additional landscape modifications could 

act to further reinforce the development of fine-scale genetic 

structure. 

Overall, this area of reclamation appears successful in 

promoting occupancy for American pikas within HVC, even 

though the species was not specifically targeted; however, 

barriers to gene flow likely associated with resource 

extraction and road construction may limit connectivity 

across the landscape. Mitigation strategies for promoting 

connectivity may be limited for American pikas given their 

thermal sensitivity and habitat requirements. However, 

American pikas have been documented inhabiting riprap 

around a small bridge (Henry et al. 2012), indicating habitat 

corridors and highway bypasses may be effective in this 

species, but additional study is required. Furthermore, 

awareness of the potential demographic and genetic 

consequences of similar landscape alterations may help 

encourage the integration of mitigation promoting 

connectivity directly into management planning in order to 

benefit other wildlife species in the affected areas. 

Additionally, this study may serve as a reference point for 

fine-scale genetic analysis across a human-modified 

landscape enabling contrast between natural and 

anthropogenically-induced genetic structure in the 

American pika. 
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