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ABSTRACT 
 

Dry, grassy sites within Douglas-fir forests are difficult to regenerate following 

harvesting due to harsh climatic conditions and intense inter-species competition for 

limited moisture resources. The objective of this study was to sample soil properties 

of a recently harvested opening (16 ha) to provide information about post-harvest 

soil conditions and their relationship with water holding capacity within these dry 

ecosystems. Utilizing soil properties with established soil water characteristic 

equations, I predicted soil water holding capacity (SWHC) across the site and at four 

depths. We completed a topographic survey for the site using aerial light detection 

and ranging (LiDAR) technology to create a high-resolution (~1m) digital elevation 

model (DEM). We statistically compared multiple topographic variables with water 

retention properties via multiple linear regression and geographically weighted 

regression to determine what drives soil moisture distribution on finer scales than 

previously studied. Coarse fragments (CF) had the highest amount of variability on 

the site and altered SWHC the greatest compared with other measured soil 

properties, with a 10% increase in CF corresponding with a 4.7 mm decrease in 

SWHC. Additionally, geographically weighted regression was found to outperform 

multiple linear regression for interpolating the measured soil properties using 

principle component derived topographic predictor variables. However, the models 

only explained roughly one half or less of the variability in all soil properties (most R2 

≤ 0.50), thereby suggesting that local soil properties be measured to gain accurate 

representations of any given site prior to conducting logging or site prescription 

treatments. To maintain sustainable timber resources within dry Douglas-fir forests 

in a changing climate, an improved understanding of the soil condition prior to 

regeneration will become increasingly important.    

keywords: soil, variability, interpolation, water, topography, drought, geostatistics, 

LiDAR  
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CHAPTER 1.0: THESIS INTRODUCTION 

 

 Forests of the Interior Douglas-fir (IDF) biogeoclimatic zone provide crucial 

natural resources within British Columbia (B.C.) for multiple industries including 

range, wildlife, recreation and forestry. Timber resources of these forest types have 

been extensively managed for over a century throughout the province, especially 

where access is favourable (ie. valley bottoms) and timber resources are easily 

extractable (Heineman et al. 2003). Within the Kamloops forest district of the 

Southern Interior Forest Region, the driest IDF variants have received a 

considerable amount of attention throughout the last few decades as healthy and 

sustainable forest management has been a growing concern along with trends in 

increasingly harsh climatic conditions (Heineman et al. 2003). The driest variants of 

the IDF surrounding Kamloops include the IDFxh1, IDFxh2 and the IDFdk1 (Lloyd at 

el. 1990). The IDFxh1 is defined as the Okanagan very dry hot IDF variant, the 

IDFxh2 is defined as the Thompson very dry hot IDF variant, and the IDFdk1 is 

defined as the Thompson dry cool IDF variant within Land Management Handbook 

number 23 (Lloyd et al. 1990). Within these dry climates, issues surrounding post-

harvest regeneration, timber growth and yield, wildlife resources, pest management, 

and cattle grazing must all be considered when producing land management 

guidelines as multiple stakeholders own value within these areas, especially in valley 

bottoms which are in close proximity with urban development (Vyse et al. 1998). 

 Among the driest ecosystem variants within the IDF biogeoclimatic zone is 

the IDFxh2 subzone (Lloyd et al. 1990), which discontinuously surrounds the city of 

Kamloops, BC. Within the IDFxh2, soil types commonly found include Eutric, 

Melanic and Dystric Brunisols as well as Gray Luvisols (Lloyd et al. 1990). The 

degree of soil profile development dictates its classification within the Canadian 

system (Soil Classification Working Group 1998), while the sufficient redistribution of 

clay from the upper surface horizons to the lower, sub-horizons is a commonly used 

measure for distinguishing between Luvisolic and lesser developed Brunisolic soils 



2 
 

within these forest types. Soils of the Brunisolic order found within semi-arid 

ecosystems of BC are often restricted by climatic factors including a lack of soil 

water to facilitate weathering (Valentine et al. 1978). On the other hand, Luvisolic 

soils of these ecosystems have experienced enough chemical and physical 

weathering to allow for sufficient amounts of clay to leach from the soil surface into 

the lower soil layers. Therefore, soil weathering of Luvisolic soils within semi-arid 

forests is often attributed to sufficient levels of soil water over time for clay leaching 

to occur, whereas the Brunisolic soils in similar ecosystems likely have not received 

the same levels of water throughout their lifetime (Valentine et al. 1978). The 

redistribution of clay within Luvisolic soils is an important feature to forest managers 

as the clay can accumulate and, if sufficient compaction occurs overtop, root and 

water penetration can become restricted (Bengough and Mullins 1990). Additionally, 

these soil layers can become very wet in the spring, potentially leading to slope 

stability issues when working with heavy machinery (Valentine et al. 1978). A 

general lack of certainty regarding the spatial distribution of these soil types found 

within the IDFxh2 has been an issue for forest managers in the past when writing 

site prescriptions. Therefore, exploring the fine-scale variability of physical and 

chemical soil properties within these forest types can also help uncover patterns in 

the characteristics which dictate soil order.     

 

Natural Disturbance History 

 

 The specific site examined within this study is characteristic of an Interior 

Douglas-fir, very dry, hot (IDFxh2) variant. This forest type is included in the natural 

disturbance type 4 (NDT 4) outlined within the B.C. Biodiversity Guidebook (British 

Columbia Ministry of Forests and B.C. Ministry of Environment, Lands and Parks 

1995). This particular NDT type is defined by grasslands, shrublands and forested 

communities which experienced frequent (roughly every 4-50 years), low-intensity 

fires, with stand replacement crown fires occurring approximately every 150-250 

years throughout their history. The IDF biogeoclimatic zones often experienced 
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periodic surface fires that consumed low-lying woody fuels, increased some shrub 

and herb communities while selecting against others, thinned younger stands, and 

maintained canopy height of live tree crowns (British Columbia Ministry of Forests 

and B.C. Ministry of Environment, Lands and Parks 1995). This historic fire regime 

maintained vegetation species composition and forest stand structure as well as 

regulated the accumulation of flammable woody debris. However, several decades 

of fire exclusion within these ecosystems has caused many Douglas-fir stands to fill 

in with young conifers resulting in fuel build-up which increases the chance of crown 

instead of surface fires. This also leads to an overall loss of understory forage for 

cattle grazing, and has the potential to promote insect and disease damage which is 

of critical concern to current forest managers (British Columbia Ministry of Forests 

and B.C. Ministry of Environment, Lands and Parks 1995). 

 Common mismanagement of the dry IDF forest types within the NDT4 has 

significantly affected the natural biodiversity. Historic areas of mismanagement 

include unregulated livestock grazing during early European settlement which lead 

to the establishment and spread of invasive species, as well as the introduction of 

non-native forage plants (British Columbia Ministry of Forests and B.C. Ministry of 

Environment, Lands and Parks 1995). In addition, human influence has destroyed 

shrub and tree cover in some areas which greatly affected wildlife species that rely 

on them for forage, protective cover and breeding purposes (British Columbia 

Ministry of Forests and B.C. Ministry of Environment, Lands and Parks 1995). Areas 

that are occupied by closed forest canopies can be used as transitory rangeland, as 

timber harvesting and stand-initiating fires create sustainable amounts of forage for 

short periods of time. Because these sites are important for both timber extraction 

and livestock grazing interchangeably, both must be considered carefully when 

performing any kind of recommendations post-disturbance (British Columbia Ministry 

of Forests and B.C. Ministry of Environment, Lands and Parks 1995). 

 Throughout recent decades, the widespread use of uniform stand-level partial 

cutting (as opposed to clearcutting) in these particular forest types has been the 

accepted practice for forest managers (Vyse et al. 1998). Although this harvesting 
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technique appears to have eliminated public fears about logging practices, an 

increasing amount of doubt has been expressed about the continuous use of the 

partial cutting within the dry-belt Douglas-fir forests. For example, Vyse and others 

(2006) found that aggregated tree retention during harvest operations, as opposed 

to evenly disbursed retention (which is the historically preferred cutting method for 

dry Douglas-fir forests) increased seedling performance as a result of increased light 

availability and reduced competition for water from large, overstory trees. Because 

large trees require such a high demand for moisture and light, they often suppress 

establishing seedlings for many years through intense competition for limited 

resources (Simpson 2000). However, they also noted that testing over a wider range 

of environmental conditions and over many years would be necessary to determine 

the overall outcome of regenerating seedlings as different results may arise if 

planting occurred during a dry year, or on coarser textured soils (Vyse et al. 2006). 

 

Forest Management Issues 

 

 In general, dry, grassy sites within the dry Douglas-fir ecosystems of B.C. are 

considered difficult to regenerate following harvesting. Harsh climatic conditions 

including severe summer drought, winter temperature extremes as well as summer 

frosts can negatively affect a seedlings chance at survival during its crucial early 

years of growth and establishment (Heineman et al. 2003). These forests receive 

less than half of the annual precipitation during the growing season, creating 

conditions of intense inter-species competition for limited soil moisture resources by 

the occupying vegetation. The abundant presence of pinegrass (Calamagrostis 

rubescens) in the understory also intensifies the moisture deficit as it is an efficient 

competitor for soil water (Nicholson 1989). It has been noted that natural 

regeneration is unlikely to be successful on these sites for a variety of reasons 

including local climate and low levels of seed production, while the success of 

planted seedlings (especially of Douglas-fir) is also typically low on drier IDF sites 

(Heineman et al. 2003). Therefore, in order to successfully manage the timber 
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resources within these forest types and to create sustainable timber yield for future 

generations, forest managers must take into consideration the probable water 

limitations for seedling growth and come up with alternative approaches to increase 

planting success. 

 Researchers have previously discovered methods for improving seedling 

microclimate and maintaining soil water resources later into the growing season 

within dry Douglas-fir variants (IDFxh2) (Black and Mitchell 1990a; Fleming et al. 

1998). Treatments including forest floor scalping, soil ripping and herbicide 

applications have all successfully conserved soil water when compared to 

undisturbed control plots. Additionally, within the IDFdk, low soil water levels were 

found to reduce seedling growth within the controls and were not a limiting factor to 

growth within the treated areas (Black and Mitchell 1990a). Additional studies within 

similar ecosystems have demonstrated the effectiveness of site preparation 

techniques which aim at improving the seedling microclimate and increase the early 

establishment of seedlings. Removing surface organic layers, altering soil 

porosity/density and controlling competing vegetation have all been found to 

influence local radiation, heat conduction as well as vapour diffusion (reducing 

seedling frost damage) on clearcut sites (Fleming et al. 1998). By removing the 

surface organic horizons, growing season soil temperatures were improved, and 

spring and summer frost damage was reduced. Furthermore, controlling vegetation 

on the grass-dominated sites reduced evapotranspiration of the competing species 

and increased overall soil water availability, especially in lower elevation sites which 

often receive less precipitation (Fleming et al. 1998). Although these prescription 

techniques have been shown to increase the immediate microclimate for seedling 

establishment and early success, the long-term effects of soil disturbance (through 

both harvest operations as well as site prescription methods) on timber productivity 

over the long term is still an unsolved mystery as long-term studies are costly and, of 

course, time consuming. 

 One approach to help mitigate the residual effects of soil disturbance within 

the dry Douglas-fir forests of BC‟s interior is the establishment and monitoring of 
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Long Term Soil Productivity (LTSP) sites (Powers et al. 2005). Within the dry IDF 

zones of the Kamloops forest district there are currently three individual sites 

(namely O‟Connor Lake, Black Pines and Dairy Creek; all within the IDFdk2) that 

have been monitored continuously for the past two decades. The site prescription 

techniques discussed previously were implemented in different treatment plots post-

harvest within each site, and compared with the control plots to determine the effects 

of different soil disturbances on tree productivity. The overall objectives of the LTSP 

project are to evaluate the effects of organic matter removal and soil compaction on 

natural soil processes and how they may alter site productivity, as well as to develop 

tools for monitoring soil progress and sustainable forest management (Reid et al. 

2015). A main finding from these studies is that the prescription methods are highly 

site specific, and the results appear to be dependent on the existing soil properties 

pre-harvest (Reid et al. 2015). This means that one method applied to one site may 

have completely different results than another site based on the soil and climatic 

conditions prior to disturbance and seedling regeneration. Because of this, intensive 

soil property studies hold considerable merit for answering the questions of post-

harvest soil conditions prior to planting within the fragile forests of the dry IDF. 

Extensive knowledge of the soils in which seedlings will be competing for resources 

is becoming increasingly important to ensure the sustainable use of these forest 

types for multiple different industries into the future.   

 

Soil Water Relationship 

 

 Physical and chemical soil properties influence plant-available soil moisture, 

which ultimately limits seedling survival following clearcut harvesting in the dry 

biogeoclimatic subzones of the southern interior of B.C. (Black and Mitchell 1990a; 

Fleming et al. 1996). It is well-documented that specific soil characteristics (such as 

texture, bulk density, carbon concentration etc.) strongly control soil water dynamics 

(Vereecken et al. 1989; Lin et al. 2006), however the spatial distribution, and the 

degree of soil variability within a site is still relatively unknown throughout these 
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ecosystems.   As logging operations in British Columbia continue to progress from 

beetle infected, pine-dominated stands, into the dry forested regions of the IDF zone 

(Klenner and Sullivan 2009), management practices and site prescription methods 

should be altered accordingly based on dissimilar soil and site characteristics in 

different climatic subzones. If harvested sites within the dry IDF are to be replaced 

by conventional planting procedures, then competition for moisture by seedlings and 

understory vegetation will be of critical concern. One approach to a better 

understanding of root zone parameters across a landscape is to measure the 

variability of soil physical and chemical properties at known sampled locations, and 

interpolate them to predict values in unsampled locations to gather a description of 

the entire study site (Ettema and Wardle 2002). Knowledge of the variability in soil 

physical and chemical properties can ultimately be used to predict available soil 

moisture (Kutílek 2004), which will have a major effect on the survival rate of newly 

planted seedlings following clearcut disturbances in dry, Douglas-fir dominated 

forests (Black and Mitchell 1990b; Fleming et al. 1994). 

 By combining intensive soil sampling on the ground with spatial mapping 

techniques, a description of the soils occupying the tree rooting zone can be 

revealed. The combination of randomly spaced soil properties throughout the 

landscape along with spatial statistics for data interpolation can demonstrate the 

degree of variability that occurs in a single-order catchment, and can serve as a 

baseline dataset which can drive future soil models within this particular forest type. 

The final dataset of soil properties can be seen as a starting point for the comparison 

of future timber growth and yield on the study area and in similar ecosystems, as 

well as future soil disturbance patterns and how soil properties may change over 

long periods of time. The future of timber harvesting, as well as grazing opportunities 

within the dry forests of the IDF is uncertain. Providing a detailed understanding of 

the soil properties which influence plant growth and success will prove to be an 

asset to forest managers applying logging and regeneration strategies within the 

IDFxh2. By gaining a full understanding of soil parameters post-harvest, forest 

managers can begin to uncover the best possible procedures for increasing a 

seedlings chance at initial survival, as well as continuous growth into the future.  
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Research Objectives 

 

 Despite a wealth of literature explaining the relationship between soil physical 

properties and soil hydrological function, a lack of knowledge still remains regarding 

the relationship between topography and soil variability and its collective effect on 

the variability of water content and site productivity. The overall goal of this project is 

to characterize the variability in soil properties at a fine-scale (~1 m) throughout a 

recently harvested site by utilizing field sampling and remote sensing techniques. I 

hypothesize that a significant relationship exists between topography and soil 

variability on a fine scale. In addition, I believe that this relationship can be used to 

accurately map the variability in soil physical properties in relation to topographic 

location to help determine soil water availability throughout the landscape. My thesis 

is separated into two stand-alone chapters. Chapter II involves the field sampling 

and analysis of variability in soil properties at the site, as well as the use of 

measured soil properties as well as hydraulic properties in relation to topographical 

influence.  

 The general goals of each chapter include: 

 Chapter II – To assess the degree of soil variability at a recently harvested 

clearcut near Isobel Lake (approximately 15 km North of Kamloops, BC) by 

intensively sampling the landscape, and to use the measured soil data to 

predict soil available water. Statistical comparisons of soil available water and 

measured soil properties will be evaluated to determine which soil properties 

have the largest influence on changing the soil water potential.   

 

 Chapter III – To apply a topographically based approach for characterizing 

soil conditions at the site based on LiDAR topographic survey data in 

conjunction with soil parameters. Statistical comparisons of the collective 

influence of spatial soil variability and multiple topographic features on a fine-

scale will be analyzed to determine which topographic variables significantly 

alter soil hydraulic parameters.  
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CHAPTER 2.0: FINE-SCALE SOIL VARIABILITY AND ITS IMPACT 

ON WATER AVAILABILITY WITHIN HOT, DRY DOUGLAS-FIR 

ECOSYSTEMS OF BC’S SOUTHERN INTERIOR. 

INTRODUCTION 

 

 The importance of plant available soil water for the successful growth and 

productivity of dry-forest ecosystems has gained an increasing amount of attention 

as researchers predict an increase in global temperatures and summer drought 

conditions in the future (Kirchen et al. 2017). By inhibiting photosynthesis and 

transpiration, soil water deficits during the growing season ultimately affect plant 

growth and can cause mortality in severe conditions, leading to an overall decline in 

productivity. Furthermore, the commercially valuable stands within interior Douglas-

fir forests are affected by water availability (Simpson 2000), and therefore may have 

increased sensitivity to more frequent summer droughts. The continuous monitoring 

of soil water is not only useful for projecting plant productivity of a site, but can also 

improve large wildfire prediction (Krueger et al. 2017). Therefore, the availability of 

soil water data through time, as well as its apparent variability across the landscape, 

will have major management implications for both forest stand production and 

wildfire safety protocols.   

 Knowledge about the heterogeneity of fine-scale (m) soil properties provides 

crucial insight into soil pedogenesis and vegetative production. Forest growth and 

tree productivity, especially during summer drought, are largely dependent on local 

soil water availability at a site (Mathys et al. 2014; Kirchen et al. 2017), which is 

ultimately driven by variation in soil physical properties and organic matter 

(Vereecken et al. 1989; Lin et al. 2006). However, the effects of fine-scale soil 

variability in relation to soil water dynamics are rarely explored within forested 

hillsides with relatively uniform topography. Due to the high variability in tree 

seedling mortality within a single harvested site (Heineman et al. 2003), it is believed 
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that soil water distribution throughout any given site within dry-forest ecosystems is 

likely not uniform, and therefore varies from location to location.   

 In general, dry, grassy sites within the dry Douglas-fir ecosystems of B.C. are 

considered difficult to regenerate following harvesting due to harsh climatic 

conditions and intense inter-species competition (Heineman et al. 2003). A 

combination of drought conditions during the growing season, extreme winter 

temperatures and occasional summer frost events, all in addition to competition for 

limited soil water reserves with efficient grass species make it difficult for Douglas-fir 

seedlings to establish successfully. Furthermore, the success of newly planted 

seedlings often exhibits considerable short-range variation on most sites within 

these ecosystems (Heinemann et al. 2003; Fleming et al. 1998). Therefore, to 

ensure sustainable timber harvests within these forests into the future, updated soil 

water information needs to be measured at finer scales than previously studied to 

refine existing soil maps (Mathys et al. 2014). 

 Direct measurements of soil hydraulic parameters are time-consuming (Gupta 

and Larson 1979; Wösten et al. 2001), and therefore costly, when compared with 

measurements of soil texture, bulk density and organic matter. Because of the 

overall difficulty in collecting direct measurements of soil hydraulic characteristics, 

the use of pedotransfer functions (PTF‟s) for predicting hydraulic parameters has 

become increasingly popular in soil mapping (Wösten et al. 2001), as well as soil 

hydrological studies (Gupta and Larson 1979; Vereecken et al. 1989; Wagner et al. 

2001; Schaap et al. 2001). While decreasing the sampling time to maintain the 

practicality of soil mapping methods in forest management situations, PTF‟s are 

commonly used to evaluate soil available water capacity (AWC), which is defined as 

the difference in soil water content between field capacity (FC) and permanent 

wilting point (PWP) (Seneviratne et al. 2010). Above the field capacity, the soil pores 

cannot resist water loss from gravitational drainage, and below the wilting point, the 

remaining water in the soil is held by the soil matrix very tightly and is therefore 

inaccessible to plant roots (Seneviratne et al. 2010; Hillel 1998). Frequently cited 

equations outlined by Saxton and Rawls (1986; 2006) have shown to be successful 
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for producing estimates of soil water parameters using easy to measure soil 

properties (Haghverdi et al. 2015). It is widely recognized that soil texture (sand, silt 

and clay contents) has a major influence on soil water characteristics in both forest 

and agricultural settings, however, additional variables including soil organic matter 

(SOM), soil bulk density and coarse fragment content have also shown to have 

important effects on hydraulic simulations (Saxton and Rawls 2006). The soil water 

characteristics equations include these variables as input parameters, and produce 

output predictions of matric bulk density as well as volumetric soil water at different 

matric potentials of field capacity and wilting point (33 kPa and 1500 kPa, 

respectively) corresponding to AWC (Saxton and Willey 2006). 

 The overarching goal of this study is to better understand forest soil variability 

as it affects water holding characteristics that are important for forest regeneration 

success and productivity within semi-arid ecosystems of BC‟s southern interior. 

Improper soil characterization of these landscapes can have detrimental effects on 

the long-term utilization of the IDFxh2 for both timber and forage resources into the 

future, and can negatively affect local and provincial economies. Recent droughts 

within BC, along with increasing average summer temperatures throughout the 

growing season, add to the negative impacts of water stress within these 

ecosystems and will be ever more difficult to control and manage for in a changing 

climate. Furthermore, increases in temperature exacerbate water stress of Douglas-

fir trees by increasing both soil and atmospheric water deficits (Restaino et al. 2016). 

As one of the most economically and ecologically important species within BC, the 

successful regeneration of Douglas-fir forests within the province will become 

increasingly crucial to ensure a profitable forest industry into future generations. By 

carefully and intensively measuring in situ soil properties, an improved 

characterization of soil patterns found at the site will reveal the apparent fine-scale 

variability and can provide knowledge on what ultimately drives soil water distribution 

within the IDF.  

 Here, I attempt to quantify forest soil variability on a fine-scale across a 

uniform hillside, where little variation in soil-forming factors exists. Despite a wealth 
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of information explaining the influence that soil properties have on soil available 

water (Saxton and Rawls 2006; Wösten et al. 2001; Gupta and Larson 1979), and its 

relationship with tree productivity within these particular ecosystems (Fleming et al. 

1998; Vyse et al. 2006), the degree of fine-scale variability that occurs within a single 

forested catchment has yet to be explored within these forest types. In addition, the 

statistical modeling of soil properties in relation to one another, as well as with the 

derived soil hydraulic characteristics is a key aspect of this research as it provides 

insight on what properties ultimately drive soil water patterns within dry, Douglas-fir 

ecosystems. This research aims to provide an extensive fundamental dataset to help 

describe forest soil variability to use in the production of future environmental models 

within these particular forest types. The specific objectives of this research are (i) to 

assess the degree of soil variability within a single-order catchment by intensively 

sampling the harvested landscape, and classifying the soil orders based on 

measured soil data, (ii) to determine the amount of plant available soil water present 

throughout a recently harvested site by making PTF predictions (following equations 

of Saxton and Rawls 1986; 2006) using measured values of soil texture, carbon, 

coarse fragments and levels of soil density, and (iii) to statistically compare the soil 

water values with measured soil properties to determine which parameters have the 

largest influence on available soil water.   

 

MATERIALS AND METHODS 
 

Site Description 

 

 The 16-ha study area is located within British Columbia‟s southern interior 

plateau (50°50'0.37"N 120°25'6.35"W) (Figure 2.1). The site is located within the 

IDFxh2 biogeoclimatic subzone (Lloyd et al. 1990). Site elevation ranges from 1010 

to 1080 m (mean of 1032 m). The site is uniformly sloping (19%) and faces south-

east. Prior to harvest in 2015, the dominant vegetation on the site included climax 
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stands of interior Douglas-fir (Pseudotsuga menziesii) with an understory rich in 

herbs and dominated by pinegrass (Calamagrostis rubescens). Average mean 

annual temperature (MAT) over recent decades (1981-2010) was 5.1oC. Mean 

annual precipitation (MAP) during this period equaled 435 mm, receiving less than 

one half during the growing season of May through September (209 mm).  

Hargreaves reference evapouration (Eref) was approximately 626 mm, while the 

Hargreaves climatic moisture deficit (CMD) was 335 mm. The thirty-year average 

annual relative humidity (RH) was 63% (Wang et al. 2016).  
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Figure 2.1: Aerial map of the harvested Isobel lake study site showing soil pit and soil water sensor locations.
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Research Design 

 

 Twenty soil pits were excavated using a backhoe creating three 100 cm x 100 

cm measurable profile faces within each pit. The pits were arranged approximately 

along the same elevation through the mid-slope position of a hillside that was 

harvested in 2015. The soil pits were separated by a minimum distance of 15 meters 

between pits 10 and 16, and a maximum distance of 607 meters between pits 4 and 

18. The pit locations were chosen based on a larger study that involves 5 individual 

trials of tree growth under treatments of grazing and no-grazing by range cattle. The 

pits were randomly placed to surround the 5 individual trials with the intention of 

characterizing the soil conditions throughout the extent of the harvested area. Soil 

subsamples were collected from three faces of each soil pit (A, B and C) at 0-15 cm, 

15-30 cm, 30-60 cm and 60-100 cm depths (one sample per profile face at each 

depth). Samples were initially placed into plastic bags and air dried for at least two 

weeks before being processed. Air dried samples were crushed with a wooden 

rolling pin and rubber mallet to break up the soil aggregates before being sieved 

through a 2 mm screen to remove all coarse fragments larger than 2 mm. The 

samples were transferred into plastic containers to be stored for future analysis. Soil 

sampling began in the fall of 2015, but an early snowfall delayed the remaining 

sampling until August and September of 2016. The location of the soil pits was 

recorded using a handheld Garmin GPS system. 

 

Climate and Moisture Data 

 

 A total of 12 soil moisture stations (EC5 soil moisture sensors, Decagon 

Devices, Pullman, WA, USA) were established across the 16-ha site in July 2015, 

and have been continuously monitoring soil volumetric water (θ) at 10, 25 and 50 cm 

below the mineral soil surface for over two years, capturing the majority of three 

growing seasons. One water measurement was recorded every hour and all data 
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were monitored and stored on a data logger (EM50, Decagon Devices). Two 

weather stations were also established within the harvested landscape to record 

additional climatic variables of precipitation (ECRN-100 tipping buckets, Decagon 

Devices), air temperature and humidity (VP-4, Decagon Devices) under disturbed 

sections of clearcut forest.  

 Soil volumetric water content recorded during the 2016 and 2017 growing 

season was used to demonstrate the rate at which soils of this particular site deplete 

their water stores as a result of transpiration by competing vegetation as well as 

evapouration. This information was used to assess the number of days newly 

established seedlings will have access to available soil water before resources are 

depleted from the site based on the total soil water holding capacity (SWHC).  

 

Measured Soil Physical and Chemical Properties 

 

 Volume of coarse fragments (%) for each soil depth was recorded in the field 

using visual observation methods (LMH 25, page 82) (BC Ministry of Forests and 

Range and BC Ministry of Environment 2010). Soil particle size distribution (% sand, 

silt and clay) was measured for all 240 samples (20 soil pits x 3 sub-samples x 4 

depths) during February of 2017 following the hydrometer method described by 

Kalra and Maynard (1991). Total soil carbon and nitrogen concentrations were 

determined by dry combustion (Nelson and Sommers 1996), and soil pH (1:2; CaCl) 

was measured using standard methods (Thomas 1996). Soil organic matter (SOM) 

was calculated by multiplying the organic carbon concentration by a factor of 1.72 

(Howard and Howard 1990). 

 One profile face from each pit was also measured for soil fine fraction bulk 

density (BD, g cm-3) at all four soil depths (total of 80 BD samples) during the 

summer of 2017 following the excavation method (Maynard and Curran 2007). The 

samples obtained for bulk density analysis were processed by first air drying them in 

paper bags for two weeks, and sieving the samples through a 2 mm screen to 
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remove all coarse fragments and wood debris. The mass and volume of coarse 

fragments and plant materials within each sample was determined and subtracted 

from the total mass and volume of soil fine fraction to be used for the final 

calculations of BD. The relative weight of rock fragments larger than 2 mm in 

diameter was used to provide a lab estimate for the percentage of coarse fragments 

within each collected sample. The lab tested values of coarse fragment 

concentrations (% volume) were used for further statistical analysis of the soil 

properties and prediction of the hydraulic parameters.  

 

Derived Soil Variables 

 

 The collected soil data from each face within each pit were analyzed to 

determine the soil classification at the order level for each profile according to the 

Canadian System of Soil Classification (Soil Classification Working Group 1998).  

 

 Total soil porosity was calculated from the bulk density measurements as:  

 

               (  *
  

    
+)            [1] 

 

Where BD is the fine fraction bulk density of the soil sample, and 2.65 represents the 

density of the individual soil particles (density of quartz rock = 2.65 g cm-3). 

Maximum bulk density (MBD) was determined for each sample by applying the 

model outlined by Zhao and others (2008) for moderate and low plastic samples, 

and was calculated as: 

 

                                  [2] 

  

Where clay and silt equal the proportion of each within a soil sample (%). Relative 

bulk density (RBD) was calculated as the ratio between fine fraction BD measured in 
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the field and the predicted MBD (Zhao et al. 2010). The final RBD values were used 

to assess post-harvest compaction on the site and were related to a threshold of 

0.80 outlined by Zhao and others (2010) as the approximate limit where Douglas-fir 

tree growth begins to decline.  

 

 Available water capacity (AWC) of each soil was determined by subtracting 

PWP from the FC value for each soil sample. Field measurements of texture and 

SOM concentration (g kg-1) were used as input variables in the soil water 

characteristics equations for predicting FC and PWP (Saxton and Rawls 2006). The 

ratio of the measured fine fraction bulk density values and the predicted bulk density 

values from the Saxton and Rawls (2006) models were used as the compaction 

factor in the model and ranged from loose (0.9) to very compacted (1.3) within the 

model limitations (predicted density equals 1.0 = normal compaction). Available 

water capacity was calculated as:  

 

                        [3] 

 

Where θFC is the volumetric water content at field capacity (33 kPa, % vol.) and θPWP 

is the volumetric water content at permanent wilting point (1500 kPa, % vol.). Using 

the soil water characteristic equations from Saxton and Rawls (2006), θFC was 

calculated as: 

 

                      
                         [4] 

 

                                          

                                         

 

and θPWP was calculated as: 

 

                                      [5] 
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Where      is 33 kPa water (first solution) of each sample,        is 1500 kPa water 

(first solution) of each sample, S is sand content (% w), C is clay content (% w) and 

OM is organic matter content (% w). Soil saturation was also calculated using the 

soil water characteristics equations from Saxton and Rawls (2006) as: 

 

                                          [6] 

 

Where θFC is calculated as above, θ(S-33) is the volumetric water content at saturation 

minus 33 kPa water (normal density) and S equals sand concentration (% w.). Soil 

water holding capacity (SWHC) for each soil layer was determined to account for 

coarse fragment content when considering available water capacity of the soils. The 

SWHC (mm) for each sample was calculated following the formula used by Kirchen 

et al. (2017) as: 

 

      ∑ (  (
   

   
))                 

 
         [7] 

Where RVi represents the volume of coarse fragments in layer i (%), θFCi and θPWPi 

represent the water values at field capacity and wilting point (m3 m-3), respectively, of 

soil layer i, and Hi represents the height of the soil layer i (mm). 

 
 

Statistical Analysis 

 

Measured Soil Properties 

 

 The measured soil data were analyzed using descriptive statistics, correlation 

and stepwise multiple regression analyses to explore the interrelationships between 

the measured variables. The Fligner-Killeen test (Conover et al. 1981) determined if 
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the assumption of equal variances was true between the variables and soil pit 

number. Analysis of variance (ANOVA) test was utilized to determine if differences in 

measured soil properties exist between the 20 individual soil pits, as well as to test 

for statistical differences between the 4 measured depths. Coefficient of variation 

statistics were used to evaluate the variability of individual soil properties measured 

between different soil pits as well as measurements taken from individual faces 

within a single soil pit.  

 

Derived Soil Properties 

 

 ANOVA followed by a Tukey-HSD post-hoc analysis was completed to 

determine if/where significant differences in AWC exist between the soil pits. The 

derived values of Saturation, FC, PWP and SWHC were analyzed using correlation 

analysis to determine which measured soil variables had the largest effect on the 

soil water availability of the site. Descriptive statistics were utilized to explain how 

differing soil texture properties, relative bulk density values, coarse fragment and 

carbon concentrations influenced the available water content at the site, as well as 

to give forest managers insight into how values of these crucial variables relate to 

soil water patterns (particularly in the top 30 cm of the soil profile).  

 The averaged soil pit dataset was divided into either Luvisol or Brunisol soil 

order to test if they have significantly different soil properties. ANOVA statistics were 

utilized to determine if significant differences exist between the Luvisolic (pits 2, 5, 7 

and 17) and Brunisolic soil pit data. Multiple logistic regression was used to model 

the accuracy of the soil data for predicting whether that soil will classify as either a 

Brunisolic or Luvisolic soil order at different sampling scales and at different depths 

(Soil Classification Working Group 1998). Residual plots and Cook‟s Distance 

statistics were utilized to assess normality of the data and to determine if large 

outliers existed within the dataset.  
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 For linear and logistic regression models that included multiple explanatory 

variables, collinearity among input variables was assessed using the variance 

inflation factor (VIF) and was calculated as:  

     
 

    
            [8] 

Where R2 is the coefficient of determination of multiple linear/logistic regression of 

each independent variable against all other independent variables (O‟Brien 2007). 

The predicted probabilities from the logistic regression models were assessed using 

cross validation methods, and by assessing the number of correctly classified soil 

orders obtained from the 2 x 2 classification table (Peng et al. 2002), which is an 

account of the number of true-positive and true-negative event outcomes (eg. soil 

correctly or incorrectly classified as Luvisol) that were predicted by the logistic 

regression model (Krueger et al. 2017). All statistical tests were performed in 

R_3.3.3 (R Core Team 2017) using the JGR gui package for much of the analysis 

(Helbig et al. 2017).  

 A power analysis was performed to determine the estimated sample size 

required for capturing a significant linear relationship between AWC values and 

coarse fragment concentration. A linear regression power analysis was completed in 

„R‟ using the „pwr.f2.test‟ within the „pwr‟ package. The estimated effect size for the 

model was 0.637, and was calculated as: 

                      [9] 

Where f2 is the predicted effect size and R2 is the coefficient of determination from 

the linear model for predicting AWC using coarse fragment concentration values 

measured at the Isobel site as the explanatory variable. This analysis was 

completed for the data measured within the top 30 cm of soil (n=40), and the 

significance level for the power analysis was set at p = 0.05 and at p = 0.10. 
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RESULTS 
 

Climate and Moisture Data 

 

 During the summer of 2017 (May-September) the Kamloops area (345 m 

a.s.l.) received a total of 45.7 mm of precipitation, with 31.1 mm falling in May, and 

only 8.6 mm between the months of June and August. This marked the driest year 

ever recorded in the area dating back to 1895 (Foulds 2017). At the Isobel Lake site 

(1030 m a.s.l.), a total of 103 mm of precipitation was recorded by the ECRN-100 

tipping buckets throughout the entire growing season, with 75 mm falling in May, and 

only 29 mm falling between June and the end of August.  

 From July 2015 to September 2017, a total of 957.6 mms of rain fell on the 

Isobel Lake site. This resulted in an average of 275 mm during the summer of 2016 

(May through September), and of 105 mm during the summer of 2017. This is 

indicative of overall lower precipitation levels recently throughout the area compared 

with historic averages. During the same period (July 2015 and September 2017), 

average RH at the site was 0.704, with the winter months (October through April) 

averaging around 0.825, and the summer months (May-September) averaging at 

0.573 (average maximum growing season [May-September] vapour pressure deficit 

(VPD) for 2016 = 1.488 kPa and for 2017 = 2.095 kPa). MAT between July 2015 and 

September 2017 was recorded to be 7.09oC (average yearly VPD = 0.298 kPa), 

indicating higher average temperatures than the area has experienced throughout 

past decades. 

 Within the top 30 cm, soils at the Isobel Lake site lost roughly 1.2 mm of 

water per day during the 2017 growing season (2 years after harvest) mainly as a 

result of evapotranspiration by competing vegetation. Due to very low inputs from 

precipitation during the 2017 growing season, total soil water fell sharply within all 

measured depths between mid-May and late-June demonstrating the severe effects 

of drought in combination with competing vegetation on these sites (Figure 2.2). 
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Figure 2.2: Total volumetric water content (θ) (in mm) recorded daily (within the top 30 cm of soil) from the 

Isobel Lake study site from April of 2016 until September of 2017.  

 

 

Measured Soil Properties 

 

 Soil physical and chemical properties are summarized in Table 2.1.Surface 

soils had similar amounts of sand and silt, with lesser amounts of clay. Particle size 

distribution of subsurface soils was usually dominated by sand with considerable 

amounts of silt, and lesser amounts of clay within all four measured depths. Sand 

concentration ranges from an average of 40.3% (95% confidence interval [CI] = 

38.9, 41.8) at the surface to 48.4% (95% CI = 46.1, 50.8) at a depth of >60cm, while 

silt had an opposite relationship with depth, decreasing from an average of 38.6% 

(95% CI = 37.1, 40.1) at the surface to 33.0% (95% CI = 31.7, 34.2) in the lowest 

measured layer. Considerable amounts of clay are present at all four depths, 

ranging from a surface average of 21.0% (95% CI = 20.1, 22.0), to 18.6% (95% CI = 

16.7, 20.5) at depths greater than 60 cm. Of the 240 collected soil samples, 89.6% 
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are categorized as a loam (L), 7.9% are sandy loam (SL), 1.7% are clay loam (CL), 

and 0.8% (2 samples) are categorized as sandy clay loam (SCL) according to the 

Canadian System of Soil Classification (Soil Classification Working Group 1998). 

Coarse fragment percentage appeared to increase with depth, varying from 14.1% 

(95% CI = 9.0, 19.3) at the surface to 36.5% (95% CI = 30.4, 40.7) at the lowest 

measured layer. However, the second depth (15-30 cm) had the highest 

concentration of coarse fragments throughout the site (40.7%, 95% CI = 31.5, 49.9). 

Surface soils are richer in both total carbon and nitrogen contents (means of 31.45 g 

kg-1 [95% CI = 26.94, 35.95] and 1.85 g kg-1 [95% CI = 1.51, 2.19], respectively) than 

the deeper soil samples (means of 7.07 g kg-1 [95% CI = 4.45, 9.69] for carbon and 

0.41 g kg-1 [95% CI = 0.27, 0.55] for nitrogen at >60 cm). However, the carbon to 

nitrogen ratio (C:N ratio) remains fairly constant (between 17 and 18%) throughout 

the entire soil profile. Additionally, soil pH slightly increases with depth from an 

average of 5.46 (95% CI = 5.28, 5.64) at the surface to 6.57 (95% CI = 6.31, 6.82) at 

depths greater than 60 cm.  

 

 Two measurements of BD were determined as outliers and were removed 

from the analyses. These samples exceeded a BD of 2.0 which is exceptionally 

higher than expected as the density of rock is 2.65 g cm-3, and contained greater 

than 70 % coarse fragments leaving only a small proportion of soil to measure for 

density. BD generally increased with depth (mean= 1.03 g cm-3 at surface [95% CI = 

0.95, 1.12] up to mean= 1.41 g cm-3 at greater than 60 cm depths [95% CI = 1.34, 

1.49]). The resulting total soil porosity decreased with depth opposite to bulk density 

(mean of 61.1% at surface to 46.6% at depths greater than 60 cm). 
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Table 2.1: Averaged soil properties measured throughout the entire study site (n=60 for variables of clay, silt, 

sand, pH, total C, total N, and C:N for each depth range: 20 pits X 3 faces/pit at all 4 depths. n=20 for variables 
of CF, BD and porosity: 1 measurement per depth within all 20 pits). Values within brackets represent one 
standard deviation from the mean. Total C = total carbon, Total N = total nitrogen, C:N = carbon to nitrogen ratio, 
CF = coarse fragments (>2 mm), and BD = fine fraction bulk density. Superscripted letters represent significant 
differences between values within different depth ranges (assessed using the Tukey multiple comparison of 
means test). 

  Depth Range (cm below soil surface) 

  0-15  15-30 30-60 60-100 

Clay (%) 21 (2.0)a 23 (2.0)ab 21 (2.0)ab 18 (4.0)ac 

Silt (%) 39 (3.0)a 34 (3.0)b 32 (3.0)c 33 (3.0)b 

Sand (%) 40 (3.0) a 43 (3.0) a 47 (4.0) b 48 (6.0) b 

pH 5.5 (0.04)a 5.7 (0.45)a 6.2 (0.05)b 6.6 (0.05)c 

Total C (g kg-1) 31 (12.0)a 16 (6.0)b 8.9 (4.4)c 7.1 (4.3)c 

Total N (g kg-1) 1.9 (0.84)a 0.92 (0.36)b 0.51 (0.20)c 0.41 (0.22)c 

C:N 17.8 (3.8)a 18.0 (4.7)a 17.5 (4.7)a 16.9 (5.4)a 

CF (%) 14 (11.0)a 41 (19.0)b 32 (11.0)b 37 (13.0)b 

BD (g cm-3) 1.03 (0.18)a 1.27 (0.28)b 1.34 (0.18)bc 1.41 (0.15)c 

Porosity (%) 61 (10.0)a 52 (10.0)b 49 (7.0)bc 47 (6.0)c 
 

  

 Measured bulk density values were verified by comparing the predicted BD 

values (derived from the Saxton and Rawls (2006) equations) with the 

measurements obtained in the field (Figure 2.3). The relationship between the 

measured and predicted was significant (p-value < 0.001; R2 = 0.319). 
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Figure 2.3: Scatterplot of the linear regression model comparing the measured BD values (obtained from field 

measurements) and predicted BD values (from Saxton and Rawls (2006) equations). BD = fine fraction bulk 
density. 

 

  

Derived Soil Properties 

 

 When examining the averaged values from all three subsamples within a pit, 

the soils on the site are predominantly Orthic Eutric Brunisols with an average pH 

greater than 5.5. However, 20% (4/20) of the sampled pits (including pits 2, 5, 7 and 

17) showed characteristics of Orthic Gray Luvisols, with adequate concentrations of 

clay eluviated from the „A‟ horizon into the „B‟ to classify it as a true Bt soil horizon 

(Soil Classification Working Group 1998) (Figure 2.4). When the data from each 

individual profile face is considered, only roughly 12% (7/60) of the faces 

(specifically, 2A, 2B, 5B, 7A, 8C, 11A and 17C) classify as being Orthic Gray 

Luvisols, while the remaining 53 soil faces have not adequately developed past the 

Orthic Eutric Brunisol classification.  
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Figure 2.4: Soil profile of pit 7, face 'A' (2.4A): representative of a Orthic Gray Luvisol also found in pits 2, 5 and 
17 at the Isobel site. Soil Profile of pit 12, face „A‟ (2.4B): representative of an Orthic Eutric Brunisol discovered in 

the remaining 16 soil pits. 

  

 The average RBD of the site was 0.702 (n=78, 95% CI = 0.671, 0.732), 

indicating that overall soil density is below the threshold limit known to restrict 

Douglas-fir seedling growth (RBD >0.72) at this site (Zhao et al. 2010). Although 18 

out of the 78 samples expressed RBD values greater than 0.80, the top 15 cm of soil 

did not experience RBD values above 0.767 and averaged at 0.574 (95% CI = 

0.527, 0.621). The greatest values of RBD were found in the bottom two soil layers 

from 30-100 cm (mean value of 30-60 cm = 0.745, mean value of 60-100 cm = 

0.786). 

 The two outlier BD values that exceeded 2.0 were also eliminated from the 

soil hydraulic calculations, and therefore the average values of PWP, FC, AWC and 

SWHC were calculated with n=78; n=20 in depths 1 and 3, n=19 in depths 2 and 4. 

The concentration of available water per cm of soil declined with depth. On average, 
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the top 15 cm of soil exhibits greater soil water holding capabilities than the 

underlying 15-30 cm layer, which can hold onto water better than the 30-60 cm layer 

below it. Available water per cm of soil volume decreased with depth on average. 

The SWHC was highest in the 0-15 cm depth range and lowest in the 60-100 cm 

layer when considering mm of water per cm of soil. Additionally, proportions of FC, 

PWP and AWC all declined with increasing depth in relation to soil volume (Table 

2.2) (Figure 2.5). 

 

Table 2.2: Average values (in mm of water) for the calculated soil hydraulic variables of saturation, field capacity 

(FC), permanent wilting point (PWP), available water capacity (AWC) and soil water holding capacity (SWHC) 
within the top 3 measured depths throughout the entire study site (n=59). Numbers in brackets represent one 
standard deviation from the mean.  

Volume of water (mm) 
in soil layer: Depth (cm) Total (mm) 

 
0-15 15-30 30-60 60cm 30cm 

Saturation 91.6 (10.2) 78.0 (15.7) 148.3 (20.1) 317.9 169.6 

    
  

 Field Cap. (FC) 49.6 (3.3) 45.4 (3.7) 83.8 (8.1) 178.8 95.0 

    
  

 Wilting Point (PWP) 24.0 (1.8) 23.3 (1.6) 42.5 (5.4) 89.8 47.3 

    
  

 AWC - Avail. Water 
Cap. (FC-PWP) 25.6 (2.4) 22.1 (3.3) 41.3 (4.4) 89.0 47.7 

    
  

 SWHC 22.0 (3.9) 13.7 (4.9) 28.3 (6.2) 64.0 35.7 
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Figure 2.5: Averaged proportion (%) of each soil hydraulic property within each sampled depth range. PWP = 

permanent wilting point, FC = field capacity and AWC = available water capacity. Error bars represent standard 
error of the mean. Letters represent significant statistical differences (p = 0.05) using Tukey multiple comparison 
of means test. 

 

 

 Adding this new soil hydraulic information with the earlier figure explaining 

total volumetric water content at the site, a clearer representation of soil water 

holding capacity in relation to site field capacity and θ is revealed (Figure 2.6). 
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Figure 2.6: Average soil volumetric water content (mm) within the upper 30 cm soil layer in relation to the 

calculated average values of site FC, PWP and SWHC in mm. SWHC (in mm) represents the fraction of soil 
water available for plant absorption above the permanent wilting point. FC = field capacity, PWP = permanent 
wilting point, AWC = available water capacity, and SWHC = soil water holding capacity. 

 

Statistical Analysis 
 

Measured Soil Properties 
 

 Soil pit number was not a significant source of variation for any of the 

measured soil properties. Soil layer depth showed a strong correlation (> 0.30 or < - 

0.30) with all the measured soil properties (Table 2.3). The strong correlation with 

texture is expected as the average soil pit experienced obvious patterns in sand, silt 

and clay with depth. Depth showed strong negative correlation with silt (-0.61), 

carbon concentration (-0.77) and nitrogen concentration (-0.75), and expressed 

positive correlations with pH (0.66) and BD (0.48). The variables of clay and CF 

concentration also had notable correlation with depth (-0.30 and 0.38, respectively). 

In addition, total C had very strong positive correlation with total N (0.92), and both 

silt and clay had strong negative correlations with sand content (-0.76 and -0.67, 
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respectively). Sand was negatively correlated with C and N (-0.62 and -0.56, 

respectively), while silt expressed positive relationships with the two (0.68 and 0.63). 

Furthermore, sand was positively correlated with pH (0.53), carbon concentration 

was negatively correlated with pH (-0.57), and fine fraction bulk density was 

positively correlated with CF concentration (0.59) (Table 2.3). All the measured soil 

variables appear to have normal distributions. 

 

Table 2.3: Soil physical and chemical property correlation matrix using data collected from the Isobel lake study 

site. The included variables are as follows: BD= fine fraction bulk density; CF= lab determined coarse fragment 
content; pH= soil pH; C:N= carbon to nitrogen ratio; N = total nitrogen content; C = total carbon content; Sand, 
Silt and Clay= textural proportions of soil sample; Depth= soil layer depth, and Soil Type = Brunisol or Luvisol. 
Bold-texted and highlighted cells represent correlations at the 0.05 significance level, and bold-texted cells 
represent correlations at the 0.10 significance level. 

 

  

 Silt was statistically related with total C concentration (p < 0.001, R2 = 0.46) 

and total N concentration (p < 0.001 and R2 = 0.39) based on linear regression 

models, however, when running the model using both C and N as explanatory 

variables the coefficient of determination does not increase (R2 = 0.45) as C and N 

co-vary. Carbon concentration explained 32% of the variation in pH values, while 

sand explained 27% when individually modelled. Furthermore, CF concentration 

alone explained 26% of the variation in BD measurements. However, stepwise 

multiple regressions were used to determine the best subset of soil properties for 

explaining the variation in BD.  The resulting best model included C in addition to CF 

Depth Clay Silt Sand Type C N C:N pH CF BD

Depth 1.00

Clay -0.30 1.00

Silt -0.61 0.02 1.00

Sand 0.65 -0.67 -0.76 1.00

Soil Type 0.00 -0.01 0.23 -0.16 1.00

C (g kg-1) -0.77 0.16 0.68 -0.62 0.08 1.00

N (g kg-1) -0.75 0.14 0.63 -0.56 0.13 0.92 1.00

C:N -0.03 0.11 0.06 -0.11 -0.21 0.21 -0.12 1.00

pH 0.66 -0.24 -0.50 0.53 -0.15 -0.57 -0.49 -0.25 1.00

CF 0.38 -0.07 -0.37 0.32 0.10 -0.38 -0.43 0.17 0.08 1.00

BD (g cm-3) 0.48 -0.10 -0.37 0.34 0.01 -0.48 -0.46 -0.02 0.22 0.59 1.00
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concentrations. The combination of these two variables for predicting BD explained 

roughly 36% of the variation when tested with linear regression analysis (p < 0.001). 

Finally, depth explained significant amounts of variation in all of the measured soil 

properties within the study (all p-values < 0.001), with C:N being the only exception 

as it did not exhibit much variation throughout the entire soil profile of most pits. 

 The coefficient of variation analysis showed that all soil variables had greater 

variation between the different soil pits, and the individual faces within a pit had less 

variability than the individual pits themselves (Table 2.4). The soil variables of CF 

and BD only had variation measured between pits as only one measurement was 

taken from within each pit at each depth, and therefore could not have additional 

variability found within a single pit. 
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Table 2.4: Coefficient of variation (CV: relative standard error) percentage of each measured soil property 

explained by the different levels of sampling. The average between pits shows the average variation found 
between each soil face of all 20 soil pits, and within pits explains the average variation found within a single pit. 
CV = standard deviation divided by the mean. CF = coarse fragment concentration, BD = fine fraction bulk 
density, C:N = carbon to nitrogen ratio.  

    Coefficient of Variation (%) 

Depth 
(cm) Variable 

Avg. Between 
Pits 

Avg. 
Within Pit 

0-15 Sand 8.59 5.55 

 
Clay 8.89 6.02 

 
Silt 8.48 6.57 

 
CF 78.0 N/A 

 
BD 17.5 N/A 

 
Carbon 39.8 27.7 

 
Nitrogen 48.3 23.1 

 
C:N 20.5 10.4 

 
pH 7.30 4.97 

15-30 Sand 6.81 5.18 

 
Clay 10.3 7.20 

 
Silt 7.64 6.27 

 
CF 48.6 N/A 

 
BD 21.8 N/A 

 
Carbon 35.2 29.8 

 
Nitrogen 38.6 23.9 

 
C:N 25.1 12.8 

 
pH 7.87 4.51 

30-60 Sand 8.21 5.83 

 
Clay 11.1 8.95 

 
Silt 8.52 6.61 

 
CF 33.8 N/A 

 
BD 13.2 N/A 

 
Carbon 41.4 29.8 

 
Nitrogen 37.0 21.7 

 
C:N 25.1 13.9 

 
pH 7.90 3.81 

60-100 Sand 11.7 6.14 

 
Clay 18.9 10.2 

 
Silt 10.6 7.38 

 
CF 35.9 N/A 

 
BD 10.8 N/A 

 
Carbon 69.1 30.0 

 
Nitrogen 55.4 20.4 

 
C:N 31.8 15.6 

  pH 7.53 4.18 
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Derived Soil Properties 

 

 The Luvisolic and Brunisolic soil orders found at the site did not contain many 

significant differences with one another when testing both the measured and derived 

soil variables. The only variables that showed a significant difference were silt 

concentration (p = 0.041) and C:N ratio (p = 0.058). None of the soil hydraulic 

properties showed significant variation between the two soil types. 

 Using both forward and backward stepwise logistic regression for predicting 

soil type (Luvisol = 1, Brunisol = 0) from the average measured soil properties 

(n=80), the model that produces the lowest value of Akaike Information Criterion 

(AIC) and the highest predictive accuracy includes the variables of silt, C:N ratio and 

CF concentration (p = 0.005, p = 0.020 and p = 0.040, respectively). When analyzing 

the VIF of each variable, all three had VIF values close to one indicating low 

collinearity among the variables included in the logistic model. When assessing the 

cross-validation estimate of accuracy, the model is 82.5% accurate at predicting the 

soil type. However, upon further analysis of the 2 x 2 classification table, the 

resulting model predicted 62 out of 64 observations correctly as Brunisols, but only 

classified 4 out of 16 observations correctly as Luvisols. In other words, the model 

classifies most observations as Brunisolic and does not have a very strong capacity 

to distinguish the different soil types. A similar test was done using only the data 

from the top 15 cm of soil (using all 3 faces of each pit, n=60) to see if surface soil 

properties can predict soil type at the site as well. The logistic regression model that 

had the highest predictive accuracy and no collinearity among input variables 

included the soil properties of silt (p = 0.130) and carbon concentrations (p = 0.037). 

The cross-validation estimate of accuracy for this model was 86.7%, which was no 

lower than the model which included all of the measured soil properties. Again, 

however, when observing the 2 x 2 classification table, the model predicted 52 out of 

53 observations correctly as Brunisols, but did not correctly classify any of the 7 

observations as Luvisols, once again indicating a low capability for the model to 

distinguish between the two. The same test was completed looking at the top 30 cm 
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of soil (n=120), and the best model discovered through stepwise logistic regression 

again included the variables of silt (p = 0.016), C:N ratio (p = 0.050) and CF 

concentration (p = 0.107). None of the three variables showed substantial collinearity 

and the cross-validation estimate of accuracy equaled 88.3%. The 2 x 2 

classification table showed similar results as before, with a high success rate at 

predicting Brunisols (all 106 classified correctly) and a very low success rate at 

predicting Luvisols (0 out of 14 correctly classified).  

 Despite coarse fragments not having any influence on the predicted values of 

FC, PWP, Saturation or AWC, it was highly correlated with all of the derived soil 

hydraulic properties (Table 2.5). CF concentration showed the highest correlation 

with AWC (-0.61) compared to soil texture (0.56 for silt, and -0.55 for sand), C 

concentration (0.60) and pH (-0.34). The correlation matrix demonstrates how an 

increase in CF concentration would decrease the amount of water a soil can contain 

at saturation, as well as decrease the AWC and overall SWHC of a soil. The high 

correlation between CF and SWHC (-0.93) was expected as it was used as an input 

variable in the SWHC equation. Additionally, an increase in pH (which is negatively 

correlated with carbon) would decrease the AWC at the site as well as SWHC. 

Furthermore, an increase in organic carbon concentration would ultimately increase 

the SWHC of the site as it directly relates to soil organic matter. CF concentration 

explains 36.5% of the variation in AWC values when tested with linear regression 

analysis, despite not being an input variable in the Saxton and Rawls (2006) 

equation (p < 0.001). When testing the linear model using CF as the explanatory 

variable for predicting AWC within the top 30 cm of soil only, 38.9% of the variation 

in AWC is explained (p < 0.001). 



 38 
 
Table 2.5: Correlation matrix demonstrating the relationships between the measured soil variables and the 

predicted soil hydraulic variables. Soil Type = Brunisol or Luvisol, C = Total Carbon, N = Total Nitrogen, CF = 
Coarse Fragments, PWP = Permanent Wilting Point, FC = Field Capacity, AWC = Available Water Capacity, and 
SWHC = Soil Water Holding Capacity. Bold-texted and highlighted cells represent correlations at the 0.05 
significance level, and bold-texted cells represent correlations at the 0.10 significance level. 

 

 

 Results from the power analysis for determining the sample size needed to 

capture the apparent relationship between AWC and CF concentration within the top 

30 cm of soil was between 16 (p = 0.10) and 19 (p = 0.05) soil pits (using only CF 

concentration as the predictor variable) depending on the desired level of confidence 

(Figure 2.7).   

 

 

 

 

 

 

Clay Silt Sand Type C N C:N pH CF Por Sat PWP FC AWC SWHC

Clay 1.00

Silt 0.02 1.00

Sand -0.67 -0.76 1.00

Soil Type -0.01 0.23 -0.16 1.00

Carbon 0.16 0.68 -0.62 0.08 1.00

Nitrogen 0.14 0.63 -0.56 0.13 0.92 1.00

C:N 0.11 0.06 -0.12 -0.21 0.21 -0.12 1.00

pH -0.24 -0.50 0.53 -0.15 -0.57 -0.49 -0.25 1.00

CF -0.07 -0.37 0.32 0.10 -0.38 -0.44 0.17 0.08 1.00

Porosity 0.11 0.37 -0.34 -0.01 0.48 0.46 0.02 -0.22 -0.59 1.00

Saturation 0.11 0.37 -0.34 -0.01 0.48 0.46 0.02 -0.22 -0.59 1.00 1.00

PWP 0.85 0.38 -0.84 0.04 0.66 0.59 0.20 -0.48 -0.26 0.34 0.34 1.00

FC 0.59 0.55 -0.80 0.05 0.73 0.67 0.14 -0.47 -0.52 0.78 0.78 0.84 1.00

AWC 0.20 0.56 -0.55 0.05 0.60 0.56 0.04 -0.34 -0.61 0.97 0.97 0.47 0.87 1.00

SWHC 0.13 0.56 -0.50 -0.02 0.58 0.60 -0.11 -0.24 -0.93 0.79 0.79 0.41 0.74 0.83 1.00
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Figure 2.7: Estimated recommended sample size (number of soil pits to dig) to identify a significant relationship 

between AWC and CF at the site (within the top 30 cm of soil), using only coarse fragments (% vol.) as the 
explanatory variable in a linear regression model. The „pwr.f2.test‟ was utilized within the „pwr‟ package in „R‟ for 
determining the sample size with a significant level of 0.05 and 0.10, f2 = R

2
/(1-R

2
) (R

2
 determined by testing the 

linear model with AWC as the dependent variable, and CF as the independent), and u = number of variables 
used in the linear regression model (1; coarse fragments).  Power was allowed to fluctuate to determine sample 
size at different levels of certainty. 

 

 The Saxton and Rawls (2006) model equations for predicting FC and PWP 

were explored using average loam textured soils from the top 30 cm of soil (sand = 

41% and clay = 22%), the average soil organic matter (SOM) content from the top 

30 cm of soil (4.2%) and the average density factor (DF) value from the top 30 cm 

(0.90). Changes in SWHC (mm) were observed with differentiating levels of coarse 

fragments. Using a range of coarse fragment concentrations from 10 to 90% (in 

increments of 10%), the total SWHC in mm was determined for the top 300 mm of 

soil. The average SWHC of the site rapidly decreased from 42.1 mm (10% CF) to 

4.7 mm (90% CF) with increasing levels of coarse fragments (Figure 2.8A). 

 When other variables were held constant, changes in SOM, sand content, 

clay content and DF significantly altered SWHC. When holding the CF concentration 

constant within the soil water equations (using the average CF value from the top 30 

cm [41%]), and using the same average values for texture and DF as above, SOM 

was allowed to fluctuate (from a value of 0 to 10% concentration) to determine its 
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effect on SWHC in the top 30 cm of soil. The average change in SWHC with 

changing SOM equaled approximately 0.80 mm/1% change in SOM (Figure 2.8B). 

Next, sand content was allowed to fluctuate while holding the other variables 

constant at their measured averages within the model. The average change in 

SWHC as a result of fluctuating sand content was approximately 1.70 mm/5% 

change in sand (Figure 2.8C). Clay was the next variable to manipulate, and was 

found to alter the SWHC by a value of roughly 1.20 mm/5% change in clay (Figure 

2.8D). Finally, DF was manipulated to determine its effect on SWHC, and was found 

to cause a change of 1.76 mm/0.1-unit increase in DF (0.9 - 1.3) (Figure 2.8E). 
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Figure 2.8: Effect of fluctuating soil variables used in the soil water characteristics equation (Saxton and Rawls 2006) 

on SWHC (mm). While one variable is fluctuating, the rest were held constant at their average value from the top 30 
cm of soil measured at the site. Figure (2.7A) = Fluctuating coarse fragment concentration (% w.). Figure (2.7B) = 
Fluctuating soil organic matter (% v.). Figure (2.7C) = Fluctuating sand content (dec. % v.). Figure (2.7D) = 
Fluctuating clay content (dec. % v.). Figure (2.7E) = Fluctuating density factor. SWHC = soil water holding capacity. 
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DISCUSSION 
 

 

Soil Forming Factors 

 

 Many of the measured soil properties at the Isobel Lake site followed pattern 

distributions that are typical for soils developed over glacial till parent materials 

within dry, forested ecosystems. The site was dominated by moderately coarse 

(loam) textured soils. The elevated concentrations of silt within the top 15 cm, 

suggests the site is capped with a layer of aeolian material. Because the site has 

developed over a till soil, the high concentration of coarse fragments was also 

expected, although the high variability in coarse fragments that was unexplained by 

topography on a small scale was a notable discovery. Total carbon ranged between 

an average of 3% at the surface to less than 1% at 60-100 cm depths, and total 

nitrogen ranged from 0.17% to 0.04% from the surface to depth. The measured 

values for these physical and chemical soil properties are comparable to the values 

reported by Hope (2006) from within very similar dry IDF ecosystems which are also 

located just north of Kamloops, BC. 

 The overall classification of soil order within the study site depended on the 

scale of measurement. Soil order within the study site showed a difference in 

classification when looking at the 60-individual soil faces as opposed to the 

averaged data from the 20 soil pits. When observing the total dataset with 60 profile 

faces (including all data from faces A, B and C from all 20 pits), only 12% of the 

individual profile faces were classified as Luvisolic soils, while 20% of the profiles fit 

the criteria when observing the average dataset from all 3 faces within a single pit 

(one averaged value for each soil property within each depth range of a single soil 

pit). Hence, overall classification of soil order of some of the soils within the study 

site depends on the scale at which the sampling is completed. The fact that the 

logistic regression models did not accurately distinguish between the Luvisolic and 

Brunisolic soil types observed at the site shows a general lack of patterned variability 
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within these soils, and intensifies the need to measure local soil properties within 

these sites prior to performing site prescription methods. Despite the minor 

differences found in soil properties that lead to a change in classification from 

Brunisol to Luvisol, the soil properties within each soil order are more similar than 

they are different, making it difficult for regression models to accurately distinguish 

them. 

 The clay accumulation in the sub-layers of Luvisolic soils has potential 

impacts on plant productivity and hydrology. Root penetration can become reduced 

at lower depths because of the finer textured soil in certain situations where excess 

compaction has occurred. In addition, high soil water levels during snow melt have 

the potential to lead to decreased slope stability and can cause temporary anaerobic 

conditions for tree seedling roots when the soil is above the field capacity (Valentine 

et al. 1978). For these reasons, the management implications for work atop forest 

soils will differ when working with Luvisolic as opposed to Brunisolic soils. As a result 

of the poor accuracy of measured soil properties for predicting soil type within these 

ecosystems, the importance of local soil studies when preparing site prescriptions is 

crucial for the accurate interpretation of the landscape, and the number of soil pits 

examined will dictate the confidence one may have with their interpolations. 

 

Soil Variability 

 

 Excluding coarse fragment concentration, soils at the Isobel site generally 

displayed less variability in physical properties (i.e. sand, silt, clay, BD) compared 

with chemical properties (i.e. carbon, nitrogen, C:N ratio). This finding is consistent 

with results from similar studies which look at the fine-scale variability of physical 

and chemical soil properties (Amador et al. 2000; Cambardella et al. 1994). 

However, the large variability in coarse fragment concentration found throughout the 

Isobel site is a notable discovery as this soil property has a strong influence on the 

water holding capacity of soils and can drastically alter the growing conditions of a 
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microsite within water limited ecosystems (Cousin et al. 2003; Baetens et al. 2009). 

It is no surprise that the concentration of rocks within the soil profile would decrease 

water storage capabilities, as they take up a large portion of the overall soil volume 

and their surface area to volume ratio is far less than soil particles within the soil 

separate of sand, silt and clay. Therefore, the space occupied by coarse fragments 

is no longer available for water storage, and specific areas that have higher levels of 

coarse fragments within the soil will experience lower water holding capacities. 

Therefore, most of the variability in SWHC throughout the Isobel site is attributed to 

the variability in coarse fragment concentration, and this relationship is likely true in 

many other ecosystems where water is limited and the soils contain moderate to 

high levels of coarse fragments. 

 Coarse fragment concentration may be the most important variable at this site 

because it has the highest level of variability and had the largest influence on SWHC 

values within the upper 30 cm of soil (Figure 2.8A). The important influence coarse 

fragments has on water storing capabilities of a soil is certainly well established in 

the literature (Poesen and Lavee 1994; Hillel 1998; Saxton and Rawls 2006), 

however, my results provide a quantifiable estimate of exactly how much the SWHC 

may change depending on the amount of rock you may have within a soil profile. 

Additionally, due to the high variation in rock concentration throughout the 

landscape, the need to measure local soil properties at multiple different points 

throughout a site will be important for the accurate estimation of the variability in 

SWHC.  

 Because SOM was the only soil property that improved the SWHC at the 

Isobel site, it is important to consider this property when developing management 

strategies within these forest types. The retention of organic matter within the topsoil 

should not only improve the amount of available water at the site, but also reduce 

the risk of further compaction. Zhao et al. (2008) found that increased levels of soil 

carbon (which is directly related to SOM) significantly reduced compaction 

(measured as soil BD) in soil samples collected from multiple different forest types 

including the IDF. Additionally, because the effects of soil compaction often are more 
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severe when soils are dry (Bulmer and Simpson 2005) retaining organic matter 

within soils of the IDFxh should have a positive effect on improving tree survival and 

growth. 

The results from the power analysis with respect to coarse fragment 

concentration as the explanatory variable for determining the apparent variability in 

AWC throughout the study site exemplifies a challenge to forest managers in terms 

of collecting adequate soil samples. To gain a level of confidence of over 90%, a 

total of 16-19 soil pits must be dug to accurately capture the variation in AWC in 

relation to coarse fragment concentration. In other words, if one was to conduct a 

similar study at a different site, and wanted to sample enough locations to accurately 

capture a significant relationship (at the p = 0.05, or 0.10 level) between CF 

concentration and AWC, 16-19 soil pits would need to be sampled (given the effect 

size to be 0.637; which was calculated from the relationship between CF and AWC 

found at the Isobel site). However, forest managers generally do not dig this many 

pits and are often limited to sampling one or two areas within the site and 

extrapolating the data across an area. My study shows that even when sampling on 

relatively uniform topography, the amount of variation in coarse fragments and AWC 

far exceeds what can be captured in one or two pits, and sites that are 

comparatively heterogeneous in topography may require far more samples to gain 

an accurate representation. 

 

Calculated Soil Properties 

 

 Relative bulk density (RBD) values measured at the Isobel Lake study site 

were not indicative of a highly compacted forest. Zhao et al. (2010) reported that 

RBD values (> 0.72) in the upper 20 cm of soils in the interior of BC were correlated 

with a significant decline in the fifth growing season (Zhao et al. 2010). Although the 

average RBD values within the upper 15 cm of soil at the Isobel site averaged at 

0.57, average RBD values at lower depths between 30 and 100 cm exceeded the 
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threshold of 0.72. In addition, Zhao et al. (2010) demonstrate that the effect of high 

RBD values increases throughout the first seven growing seasons and therefore 

represents an ongoing management concern that persists further than the initial 

seedling establishment. Caution should be practiced when planning site preparation 

and planting procedures at this site to ensure further compaction does not occur 

because measured RBD values in the surface layers of the Isobel site are 

approaching the 0.72 threshold found by Zhao et al. (2010). This is especially 

important within IDFxh ecosystems as these forest types are generally water limited 

rather than energy (heat) limited (Heineman et al. 2003), and, based on the results 

from this study, further compaction will reduce the amount of soil water available to 

plants. In addition, the effects of compaction were found to have a more negative 

effect on tree seedling growth when the soils were under dry conditions as opposed 

to being moist (Bulmer and Simpson 2005; 2010). Due to the extremely dry 

conditions recorded at the Isobel site during the 2017 growing season, further 

compaction of these soils could have very negative effects on the successful 

regeneration of these forest types as it will further negatively affect soil water 

availability.   

 The calculated values for FC and PWP matched well with the soil volumetric 

water content that was measured throughout the previous three growing seasons. 

The graph illustrating the volumetric water content in relation to FC and PWP show a 

general agreement as the total volume of water under drought conditions (2017 

growing season) leveled off just below the average predicted value of PWP (~36-38 

mm/30 cm depth) from the Saxton and Rawls (2006) equations, indicating that the 

soil is dry to the point where roots can no longer access the remaining soil water. 

This result indicates that the soil water characteristic equations created by Saxton 

and Rawls (2006) for predicting hydraulic properties within agricultural soils is 

relatively accurate within forested settings as well, assuming local physical and 

chemical properties can be included in the equations. The author recognizes that 

Douglas-fir roots can grow much deeper than 30 cm over time; however, this is the 
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depth range at which seedlings will need to access moisture from the most during 

their first few years of establishment. 

 Within the topsoil of dry Douglas-fir ecosystems, the temporal distribution of 

precipitation inputs will influence regeneration success of newly established 

seedlings. The average SWHC at the study site was found to be roughly 35.74 

mm/30 cm of topsoil. This means that when all of the gravitational water has drained 

out and the soil is at field capacity, the soils can store on average 35 mm of water 

within a 30-cm profile. Previous research examining the water use of interior 

Douglas-fir suggests that daily early summer water use by trees is between 

approximately 1 and 1.5 mm (Simpson 2000). My results from the volumetric water 

data collected from 2015 to 2017 show similar results with an average decrease in 

total water volume of roughly 1.2 mm/day. Because the total budget of available 

water at field capacity is only 35 mm, and the site is losing roughly 1.2 mm of water 

per day due to evapotranspiration, plant roots will only have about 29 days or one 

month to access soil water before it becomes too dry and all remaining water is held 

tightly within soil micropores. This was not a concern during the 2016 growing 

season as sufficient precipitation events appeared to counteract the drying effect of 

the soils throughout the summer, but during 2017 (when precipitation was well below 

average throughout the later parts of the growing season) the soil water content 

decreased rapidly and there were not enough precipitation events to keep the 

volumetric water concentration above the calculated wilting point. 

 Soil water deficits are known to cause stress to vegetative growth by inhibiting 

photosynthesis and transpiration and can ultimately lead to mortality under 

extremely dry conditions (Mathys et al. 2014). Furthermore, climate change models 

have projected a general increase in temperatures, which will lead to greater 

decreases in available soil water (Littke et al. 2018), especially in the hottest 

summer months of July and August. These changes in temperature without a large 

increase in precipitation will increase the evapotranspiration demands of Douglas-fir 

seedlings and will undoubtedly hinder tree growth. Additionally, the increased drying 

of the IDFxh into the future has major implications for increased fire and insect 
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disturbances as the forests become more water stressed (Littke et al. 2018). If forest 

managers are going to continue to harvest in the dry Douglas-fir ecosystems of BC‟s 

southern interior, regeneration strategies will have to shift to accommodate for the 

predicted increases in temperature and corresponding declines in available soil 

water – a task that may prove to be ever more difficult as time persists.   

 

 

CONCLUSION/SUMMARY 
 

 The results of this study provide a fundamental dataset which can be used for 

the development of future soil models within similar ecosystems. By intensively 

sampling a small forested hillside, specific relationships between soil properties and 

water availability were determined, and the overall variability of these relationships 

was explored. Because coarse fragment concentration had a highly negative effect 

on the soils ability to retain water, it is important for forest managers to determine the 

stoniness of soils prior to prescribing regeneration strategies, and to ponder the 

potential detriments to regeneration of Douglas-fir seedlings within rocky soil 

substrates. Furthermore, because organic matter content was the only soil property 

which improved SWHC, it is important to consider this variable when planning 

logging and site preparation strategies within the IDFxh. The retention of organic 

matter within the soil surface will not only improve water availability, but also 

decrease the potential for compaction.  

 In the face of increasing average global temperatures and drought conditions, 

it is of the upmost importance to determine the relationships between fundamental 

soil properties and related hydraulic characteristics to ensure the continued success 

of the forest industry within BC. Because these ecosystems are becoming 

increasingly difficult to regenerate following harvest, information about the effects of 

soil variability on the variability in AWC will be crucial to forest managers tasked with 
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operating within these forest types. Future research should focus on fine-scale soil 

variability within other dry forest ecosystems and their relationship with AWC to help 

solve the ongoing issue regarding a lack of small-scale soil information, and to 

improve existing soil maps with greater soil water information within the province.   
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CHAPTER 3.0: TESTING THE APPLICATION OF SPATIAL 

INTERPOLATION REGRESSION METHODS FOR PREDICTING FINE-

SCALE FOREST SOIL VARIABILITY. 

INTRODUCTION 
 

 Studies that explore fine-scale behavior of soil water have become 

increasingly important to forest managers as average global temperatures continue 

to rise and drought conditions are predicted to increase into the future. Because 

local soil properties influence the infiltration, run-off and redistribution of water 

inputs, their overall makeup dictates the soil water dynamics of a site, which has 

immediate effects on tree and plant growth during periods of precipitation shortage 

(Romano and Palladino 2002). Due to the large influence that soil properties have 

on soil hydraulic characteristics (Saxton and Rawls 2006), the need to accurately 

quantify and map the spatial variability in local soil properties within a single 

catchment site is crucial for determining best management practices and for 

accurately determining available water throughout the entire landscape. By 

identifying soil available water on the ground, forest managers can begin to focus 

silvicultural efforts to maximize water use at a site and to improve seedling 

performance in areas that may be experiencing significant water stress during 

extended periods of the growing season. 

 General topography and landscape position affect the variability of certain soil 

characteristics. Distribution of water, clay particles, ions and minerals are greatly 

affected by a soils position on the landscape (Jenny 1994; Sinowski and Auerswald 

1999; Lybrand and Rasmussen 2015). Previous research has demonstrated that 

landscape position, and its associated microclimate conditions, are primary controls 

on soil development and vegetative distribution in semi-arid ecosystems where 

water is limited during periods of the growing season (Koch et al. 1995; Dahlgren et 

al. 1997; Lybrand and Rasmussen 2015). Convergent locations typically have higher 

concentrations of soil organic carbon as well as fine-grained soil materials relative to 
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upslope divergent sites (Applegarth and Dahms 2001; Lybrand and Rasmussen 

2015). In addition, soil profiles in convergent locations are typically more developed 

in relation to limited water resources being concentrated in downslope positions of 

the landscape (Lybrand and Rasmussen 2015). Furthermore, as you move upwards 

along an elevation gradient, increased precipitation and temperature fluctuations 

occur across short distances and can result in a wide-range of soil properties. The 

greater precipitation, decreased temperature and decreased evapotranspiration 

demands at higher elevations (Lybrand and Rasmussen 2015) indirectly affects 

microbial activities and soil organic carbon content (Schaetzl and Thompson 2015). 

Therefore, the subsequent variation in soils at different landscape positions within a 

small catchment zone should relate to high variations in soil hydrological processes 

(Biswas 2014a). 

 The influence of topography on the spatial distribution of soil hydraulic 

properties of field capacity (FC), permanent wilting point (PWP), and available water 

capacity (AWC) has been well established in the literature over large areas on 

coarse scales (Mohanty and Mousli 2000; Romano and Palladino 2002; Obi et al. 

2014), but has yet to be tested on small hillslope scale variability within British 

Columbia. A study conducted by Obi et al. (2014) on coastal plain soils in Nigeria 

showed that FC water content was significantly correlated (p < 0.05) with slope, 

compound topographic index (CTI), sand content and clay ratio. Actual AWC 

(measured as the amount of water in the soil between FC and PWP) was 

significantly correlated with aspect, CTI and sand contents, while PWP depended on 

slope, aspect, total curvature, stream power index (SPI) as well as with sand 

content. Finally, they found that hydraulic conductivity depended on SPI, sand 

content, silt content, and the silt-clay ratio (Obi et al. 2014). This study, however, 

was administered over a larger area (8412 km2) than my study site (16 ha), and the 

quantification of small-scale soil variability in relation to topography is still relatively 

unknown.  

 Soil mapping methods as well as the accuracy of digital soil maps has been 

improved by the availability of global positioning systems (GPS), geographical 
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information systems (GIS), remote sensing and spatial statistics. By providing more 

accurate spatial information at finer scales, these innovations are becoming the well-

accepted standard by pedologists and soil mappers worldwide (Brevik et al. 2016). 

The concept behind spatial statistics relies on the principle of spatial autocorrelation, 

which measures the similarity by proximity of soil samples (ie. the farther you move 

away from a soil sample, the greater the variability will become in a given soil 

property). The use of regression based spatial statistics for creating digital soil maps 

(DSM) requires three main components in order to be useful and complete (Minasny 

and McBratney 2016). First, an input component consisting of field and lab 

observations of local soil properties either from legacy soil maps or from new field 

samples is required. Next, the inference process used for the interpolation of soil 

properties must be identified, and includes the building of models for comparing soil 

observations with environmental covariates or factors affecting soil variability. 

Finally, an output is produced in the form of raster maps or predictions along with 

uncertainty of prediction (Minasny and McBratney 2016).   

 A simple method for interpolating soil properties using digital elevation model 

(DEM) data is to apply multiple linear regression (MLR) to a dataset. By using MLR 

alone, soil values are predicted throughout the landscape based on their 

relationships with values from predictor raster grids created from the DEM. While 

MLR applies a global method for interpolating soil properties, different geostatistical 

approaches have been developed to account for local variability in soil properties 

with respect to their spatial location, and assume that the structure of the soil data 

will change over space. Therefore, geostatistical methods will allow different 

relationships within the model to exist at different points in space (Brunsden et al. 

1996; Wang et al. 2012). Geographically weighted regression (GWR) is a spatial 

analysis technique that was specifically designed to account for the spatial 

heterogeneity of soil properties by measuring the relationship between the 

dependent and independent variables at certain points, which differ from location to 

location (Fotheringham et al. 1998). Thus, the model performance when using GWR 

will vary across the study region and is dependent on local relationships between 
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soil data and the additional topographic variables. In order to compare the methods 

of MLR and GWR it is important to understand the model components of each. 

 Global regression models such as MLR follow the assumptions outlined by 

the following equation: 

         ∑                   [1] 

where yi represents a dependent variable, the x are independent variables, α 

represents a parameter to be estimated, ε represents an error term, and i represents 

a point in space at which observations on the y and x axis are recorded. GWR builds 

on this model by allowing local rather than strictly global parameters to be estimated 

and the model is rewritten as: 

 

                ∑                         [2] 

 

where         denotes the coordinates of the ith point in space and           is the 

realization of the continuous function         at point i. The spatial variability is then 

captured by allowing a continuous surface of parameter values in relation to surface 

measurements recorded at the site (Wang et al. 2012). Thus, GWR recognizes that 

spatial variations in relationships between soil and topography may exist, and 

provides a method to measure each point (Fotheringham et al. 1998). Previous 

research using GWR methods for soil spatial analyses have proven useful and 

accurate for interpolation of soil organic matter (SOM) (Wang et al. 2012; Mishra et 

al. 2010), soil organic carbon (Song et al. 2016), total nitrogen (Wang et al. 2013), 

and soil electrical conductivity (Terrón et al. 2012).  

 The overall goal of this study is to quantify the fine-scale soil physicochemical 

and hydraulic variability of hot, dry Douglas-fir ecosystems within British Columbia 

using topographic indices as predictor variables in regression based spatial 

statistics. In doing so, the influence of topographic variables can be assessed for 
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their relationship with the measured and calculated soil parameters. I will test 

whether or not the variation in the topographic landscape can be used to accurately 

interpolate measured and derived soil properties in order to create predictions of 

crucial soil data throughout the entire harvested area. Similar studies for quantifying 

soil spatial variability have been conducted on much larger areas (Obi et al. 2014; 

Levi and Rasmussen 2014; Levi et al. 2015) and on similar sized single-order 

catchments (Holleran et al. 2015). However, measured soil properties have rarely 

been coupled with soil hydraulic parameters across an entire harvested landscape 

(Romano and Palladino 2002), and has yet to be assessed within British Columbia. 

Soil spatial analyses over finer scales are necessary for forest managers to better 

understand the hydrological and vegetation responses to different soil parameters. 

Additionally, the statistical modeling of the soil hydraulic parameters with 

topographic features via regression models is a key aspect to this research as it 

helps to explain the fundamental patterns of soil water dynamics within recently 

harvested forests of dry Douglas-fir ecosystems. By doing this, the applicability of 

different spatial regression methods can also be assessed for their usefulness within 

fine scale topographic surveys. The specific objectives of this research are to (i) 

determine the best scale for acute topographic analysis (1, 3 or 5 m) by testing the 

regression models on specific soil variables while adjusting the kernel radius to allow 

for different levels of cell smoothing, (ii) quantify soil variability throughout the 

landscape at 4 depths using multiple linear regression to determine topographic 

influence on soil properties within different soil layers, (iii) test the usefulness of 

principle component analysis (PCA) to combine covariate topographic grid layers for 

use as predictors within the spatial regression models, and (iv) compare different 

spatial regression methods of MLR with GWR to determine the practicality of each 

method for predicting fine-scale soil variability within these ecosystems. This 

research was completed in an effort to improve the understanding of fine-scale soil 

water dynamics within water limited ecosystems of interior Douglas-fir forests. By 

combining measured soil properties with these advanced geostatistical methods, I 

will be able to assess the suitability and accuracy of these techniques for fine-scale 
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forest soil characterization of hot, dry Douglas-fir ecosystems within British 

Columbia. 

 

METHODS 
 

Site Description 

 

 Refer to chapter 2.0 for site description information. 

 

Research Design 

 

 Refer to chapter 2.0 for research design information. The location of the soil 

pits was noted using a handheld Garmin GPS system and a topographic survey for 

the site was completed using an aerial light detection and ranging (LiDAR) survey at 

a 1 m ground resolution and was processed using the System for Automated 

Geoscientific Analysis (SagaGIS) software (version 4.0.1) (Conrad et al. 2015). 

 

Soil Properties 

 

 Methods for collecting soil properties are fully explained within chapter 2.0. 

 The soil water characteristics equations developed by Saxton and Rawls 

(2006) were utilized to predict soil hydraulic variables from the measured soil data. 

The variables of soil texture, SOM, CF concentration and DF were implemented into 

the model to predict the values of soil saturation, FC, PWP, and AWC (= FC – PWP) 

(as explained in chapter 2.0). Soil water holding capacity (SWHC) for each soil layer 

was determined to account for CF content when considering AWC of the soils. The 
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SWHC (mm) for each sample was calculated following the formula used by Kirchen 

et al. (2017) as: 

 

      ∑ (  (
   

   
))                 

 
         [3] 

where RVi represents the volume of coarse fragments in layer i (%), θFCi and θPWPi 

represent the water values at field capacity and wilting point (m3 m-3), respectively, of 

soil layer i, and Hi represents the height of the soil layer i (mm). 

 

 

Mapping and Geostatistical Analysis 

 

 Using the LiDAR digital elevation model (DEM) created in SagaGIS, 

environmental covariate layers (grids) were developed from the remotely sensed 1 

m pixel resolution imagery collected in 2015 (Table 3.1). The geostatistical mapping 

tool, SagaGIS, was utilized to produce spatial maps of the field site to explain 

patterns of the measured and derived soil properties. The covariate layers produced 

for the site were derived from both reflectance and elevation indices and included 

elevation, positive openness (PO), LS factor (LS), convergent index (CI), catchment 

area (CA), catchment slope (CS), modified catchment area (MCA), topographic 

wetness index (TWI), slope, topographic position index (TPI), valley depth (VD), and 

multiresolution index of valley bottom flatness (MRVBF) (total of 12 grid layers in 

total) (Table 5.1, Appendix I). The same topographic grid layers were also produced 

using the simple filter function in SagaGIS, and with a kernel radius of 1 and 2 

(giving each 1 m2 cell a smoothing distance of one and two cells in every direction, 

respectively), to create grid layers at 3 m and 5 m spatial scales. The grid layers at 

different spatial scales were then tested via linear regression on the variables of 

sand, clay, total C, BD and pH to determine the best scale for soil predictions within 

these ecosystems. 

 



 60 
 
Table 3.1: Descriptive statistics of the 12 topographic raster grid layers produced in SagaGIS using the LiDAR-

derived digital elevation model for the Isobel Lake study site. CI = Convergence Index; LS = Length Slope 

Factor; TPI = Topographic Position Index; CA = Catchment Area; CS = Catchment Slope; MCA = Modified 

Catchment Area; TWI = Topographic Wetness Index; MRVBF = Multi-Resolution of Valley Bottom Flatness; VD = 

Valley Depth; and PO = Positive Openness. 

Topographic Variable Unit Min Max Mean SD 

1. Elevation (m) 1017 1066 1040 11.79 

2. Slope Radians 0.00 0.97 0.21 0.08 

3. CI - -76.93 93.70 0.03 3.23 

4. LS - 0.00 12.87 2.72 1.21 

5. TPI - -4.71 6.39 0.57 1.95 

6. CA - 1.0 880.0 142.0 375.4 

7. CS Radians 0.01 0.86 0.19 0.05 

8. MCA - 1.0 1100.0 166.7 454.3 

9. TWI - -1.56 7.16 2.12 0.64 

10. MRVBF - 0.00 2.79 0.09 0.24 

11. VD - 0.00 14.49 1.18 2.17 

12. PO - 1.15 1.59 1.48 0.04 

 

 A correlation matrix with linear regression analysis was created for each 

measured depth to demonstrate the significant relationships between the sampled 

and derived soil properties with the 12 individual topographic grid layers developed 

in SagaGIS. Multiple linear regressions (MLR) were used to test the predictive 

accuracy of the 12 topographic grid layers combined on the individual soil properties 

throughout the landscape at the 4 measured depths. The strength of the prediction 

at each depth is reported as the R2 value of each regression model and was 

assessed to determine at which depth topography is the most accurate at explaining 

the apparent soil variability.  

 PCA (for combining grid layers with collinearity) was tested for its usefulness 

on fine-scale soil predictions by comparing spatial regression models using both 

PCA combined grid layers and individual grid layers as the predictors for different 

soil properties. The 12 grid layer values were first standardized within SagaGIS and 

assigned a z-score as: 

                   [4] 
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where   represents a raw score for each variable,   represents the mean value of 

that grid layer, and   represents the standard deviation. To determine which layers 

accounted for 90% of the variability within the covariate landscape dataset, the 

statistical software “R_3.3.3” was utilized to run PCA (using covariance matrix) on 

the topographic variable data created in SagaGIS. PCA methods were then run in 

SagaGIS to eliminate the redundant data layers in the dataset and to create distinct 

environmental covariates (grids) to be used in regression models for predicting 

variability in soil properties (Levi and Rasmussen 2014, Holleran et al. 2015). The 

threshold for automated predictor selection for both regression models with and 

without principle components was set as p = 0.10 within SagaGIS.  

 GWR techniques were processed in SagaGIS using the 12 topographic grid 

layers as predictor variables and a Gaussian weighting function with a global search 

distance for interpolating the soil data. A comparison of the resulting coefficient of 

determination (R2) from each test was used to determine the overall accuracy of 

these models for predicting the different soil properties. Coefficients of determination 

(R2) values from the multiple linear regression models were then compared with the 

R2 values from the GWR models to determine if GWR was successful at increasing 

the predictive accuracy of the PCA topographic grid layers. Both the MLR and GWR 

models with PCA predictor grids were cross-validated using a leave-one-out method 

and comparing the observed versus predicted values at each point on the landscape 

where the data was removed. A total of 10 runs were performed on each soil 

variable within each of the 4 measured depths to create the observed versus 

predicted comparisons, and a different line of data was randomly removed from the 

full dataset for each cross-validation test. 
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RESULTS 
 

Soil Properties 

 

 Refer to results section of chapter 2.0 for all soil property measurements at 

the Isobel Lake site.  

 

 The concentration of available water per cm of soil declined with depth. All of 

the soil hydraulic variables decreased with depth on average. The SWHC was 

highest in the 0-15 cm depth range and lowest in the 60-100 cm layer. Calculated 

SWHC showed significant differences between the surface soil layer and all the 

lower 3 depths (p-values all < 0.05), however, SWHC was not statistically different 

between the lower 3 depth ranges themselves (p-values all > 0.05). Additionally, 

values of FC, PWP and AWC significantly declined with depth (Table 3.2).  

 

Table 3.2: Average values (in vol vol
-1

) for the calculated soil hydraulic variables of field capacity (FC), 

permanent wilting point (PWP), available water capacity (AWC) and soil water holding capacity (SWHC) at 4 
different depths throughout the entire study site (n=60 for each depth). Numbers in brackets represent standard 
error of the mean. Superscript letters represent significant statistical differences (p = 0.05) between mean values 
using Tukey multiple comparison of means test. 

  Depth Range (cm below soil surface) 

 
0-15 15-30 30-60 60-100 

FC (vol vol
-1) 0.332 (0.003)a 0.301 (0.003)b 0.275 (0.003)c 0.250 (0.004)d 

PWP (vol vol
-1) 0.161 (0.002)a 0.155 (0.002)a 0.138 (0.002)b 0.121 (0.003)c 

AWC (vol vol
-1) 0.171 (0.002)a 0.147 (0.003)b 0.137 (0.002)bc 0.130 (0.002)c 

SWHC (vol vol
-1) 0.147 (0.003)a 0.0910 (0.004)b 0.094 (0.003)b 0.0850 (0.002)b 

 

 

Mapping and Geostatistical Analysis 

 

 Testing the regression models using variable kernel radii of 0, 1 and 2 did not 

appear to have a positive effect on the predictability of the soil properties of sand, 

clay, carbon, BD or pH within the top 15 cm of soil. Increasing the smoothness of the 
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topographic data slightly increased the R2 value for some variables, while it reduced 

R2 values for others, but the changes were minor (Figure 3.1). Additionally, 

increasing the kernel radius did not improve the models at any of the lower 

measured depths. For this reason, I chose to continue using the original LiDAR data 

at 1 m scale for the remainder of the topographic regression analyses.  

 

Figure 3.1: Fluctuating kernel radius of topographic grid layers and their associated R
2
 values with respect to 

different soil properties. A total of 12 grid layers were used in the regression models for each individual kernel 
radius and were used as predictor grids for explaining soil patterns within the upper 15 cm of soil. BD = fine 
fraction soil bulk density. 

 

 In total, the 12 topographic grid layers showed significant correlation (at p= 

0.10) with a selection of 15 soil properties 228 times throughout the 4 measured 

depths (Table 3.3). Different topographic grid layers showed significant correlation 

with the numerous soil properties throughout different depth ranges. Grids that 

demonstrated the most correlations with the soil data within the upper 15 cm of soil 

did not necessarily show significant correlation with subsurface values of the same 

properties. For example, the layers of Elevation, CI, MCA and TPI demonstrated 

high correlations with soil texture within the 0-15 cm depth, whereas only the grid 

layer of CI had high correlation with soil texture in the 15-30 and the 30-60 cm depth 

ranges (Table 3.4). Additionally, the grid layers of Slope and LS showed high 
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correlation with the soil hydraulic properties in the 0-15 cm layer, while PO, TPI and 

CS demonstrated high correlations with soil water variables in the 15-30 cm layer. 

Soil hydraulic properties within the 30-60 cm layer were highly correlated with 

Elevation, MCA, TWI and TPI. Hydraulic properties within the lowest measured layer 

of 60-100 cm also showed high correlation with Elevation and TWI; however, they 

also showed highly significant correlations with MRVBF and Slope. Furthermore, BD 

correlated highest with Elevation and TPI at the soil surface (0-15 cm) and with PO 

and CS in the 15-30 cm depth, while MCA, TWI and MRVBF were also highly 

correlated with BD within the bottom 70 cm of soil (Table 3.4).  
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Table 3.3: The number of times (out of a total of 15 tested soil variables) each topographic grid layer showed a 

significant correlation at the p = 0.10 level with a soil property. DEM Elev = site elevation, CI = catchment index, 
LS = length-slope factor, TPI = topographic position index, PO = positive openness, CA = catchment area, = CS 
= catchment slope, MCA = modified catchment area, TWI = topographic wetness index, MRVBF = multi-
resolution of valley bottom flatness, VD = valley depth. 

 

 

 

Table 3.4: Correlation matrix showing the relationship between measured and derived soil properties within 

different depth ranges of the soil profile with topographic grid layers produced in SagaGIS. Bold text and 
highlighted cells represent significant relationships at the 0.10 level. DEM Elev = site elevation, CI = catchment 
index, LS = length-slope factor, TPI = topographic position index, PO = positive openness, CA = catchment area, 
= CS = catchment slope, MCA = modified catchment area, TWI = topographic wetness index, MRVBF = multi-
resolution of valley bottom flatness, VD = valley depth, C = total carbon, N = total nitrogen, C stock = carbon 
stock, CF = coarse fragments, BD = fine fraction bulk density, PWP = permanent wilting point, FC = field 
capacity, AWC = available water capacity, and SWHC = soil water holding capacity. 

 

 

DEM Elev Slope CI LS TPI PO CA CS MCA TWI MRVBF VD Total

0 - 15 cm 9 8 4 7 8 5 4 3 5 2 3 5 63

15 - 30 cm 7 4 6 0 7 8 0 8 3 0 2 0 45

30 - 60 cm 7 3 7 2 6 4 6 6 7 6 4 1 59

60 - 100 cm 8 7 7 7 3 1 3 3 3 6 8 5 61

Total 31 22 24 16 24 18 13 20 18 14 17 11 228

0 - 15 cm DEM Elev Slope CI LS TPI PO CA CS MCA TWI MRVBF VD

Sand 0.31 0.09 -0.11 -0.07 0.53 0.10 -0.45 -0.24 -0.48 -0.22 -0.02 -0.05

Silt -0.22 0.09 0.29 0.18 -0.38 -0.07 0.33 0.14 0.34 0.20 -0.17 0.06

Clay -0.16 -0.32 -0.32 -0.18 -0.29 -0.08 0.22 0.19 0.26 0.04 0.32 -0.01

C (g kg-1) 0.03 -0.11 0.04 -0.18 0.34 0.18 -0.12 -0.19 -0.19 -0.16 -0.02 -0.14

N (g kg-1) -0.29 -0.07 -0.06 -0.08 0.17 -0.03 -0.03 0.06 -0.09 -0.01 0.08 -0.05

C:N 0.57 -0.05 0.24 -0.15 0.31 0.42 -0.15 -0.44 -0.18 -0.27 -0.24 -0.17

C Stock (kg m-2) -0.28 -0.02 0.12 -0.04 0.04 0.04 0.01 0.02 -0.09 -0.11 -0.04 -0.04

pH 0.05 -0.39 -0.25 -0.45 0.06 0.09 -0.31 0.05 -0.07 -0.12 0.39 -0.30

CF (% vol.) 0.29 0.16 0.04 0.14 0.37 0.10 -0.14 -0.35 -0.25 0.06 -0.08 0.05

BD (g cm-3) -0.46 0.25 0.09 0.35 -0.36 -0.26 0.17 0.21 0.05 0.12 -0.01 0.27

Saturation (% vol.) 0.46 -0.25 -0.09 -0.35 0.37 0.26 -0.17 -0.21 -0.05 -0.12 0.01 -0.27

PWP (% vol.) -0.08 -0.32 -0.18 -0.29 0.11 0.12 0.03 -0.05 0.00 -0.11 0.20 -0.13

FC (% vol.) 0.17 -0.34 -0.11 -0.36 0.19 0.22 -0.01 -0.13 0.06 -0.09 0.10 -0.23

AWC (% vol.) 0.34 -0.22 0.00 -0.28 0.19 0.23 -0.04 -0.15 0.09 -0.03 -0.04 -0.23

SWHC (% vol.) -0.06 -0.22 -0.04 -0.22 -0.19 0.03 0.10 0.19 0.25 -0.04 0.05 -0.14
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15 - 30 cm DEM Elev Slope CI LS TPI PO CA CS MCA TWI MRVBF VD

Sand -0.17 0.04 -0.22 -0.02 0.21 -0.10 -0.17 0.10 -0.16 -0.03 0.15 0.05

Silt 0.21 0.06 0.40 0.04 -0.04 0.20 0.09 -0.16 -0.02 -0.03 -0.22 -0.06

Clay -0.04 -0.11 -0.19 -0.03 -0.21 -0.12 0.10 0.07 0.22 0.08 0.08 0.02

C (g kg-1) -0.02 -0.12 0.29 -0.11 0.06 0.19 0.01 0.02 0.04 0.01 -0.02 -0.20

N (g kg-1) -0.31 -0.04 0.01 -0.02 0.00 -0.07 0.06 0.24 0.02 0.05 0.07 -0.11

C:N 0.38 -0.18 0.38 -0.21 0.15 0.42 -0.10 -0.33 -0.02 -0.08 -0.10 -0.17

C Stock (kg m-2) -0.04 -0.18 0.06 -0.12 -0.05 0.03 0.17 0.19 0.16 0.03 0.00 -0.16

pH -0.28 -0.27 -0.46 -0.20 -0.26 -0.22 0.01 0.20 0.23 0.14 0.37 -0.15

CF (% vol.) -0.07 -0.09 0.24 -0.07 0.24 0.26 -0.12 -0.42 -0.17 0.07 0.03 0.01

BD (g cm-3) -0.24 -0.27 0.09 -0.20 0.22 0.37 0.08 -0.31 0.02 0.19 -0.02 -0.05

Saturation (% vol.) 0.24 0.27 -0.09 0.20 -0.22 -0.37 -0.08 0.31 -0.02 -0.19 0.03 0.05

PWP (% vol.) -0.05 -0.16 -0.06 -0.07 -0.17 -0.03 0.09 0.08 0.22 0.07 0.07 -0.07

FC (% vol.) 0.23 0.19 -0.06 0.16 -0.29 -0.33 -0.01 0.30 0.08 -0.15 0.02 0.01

AWC (% vol.) 0.27 0.27 -0.03 0.20 -0.23 -0.33 -0.06 0.28 -0.01 -0.19 -0.01 0.05

SWHC (% vol.) 0.13 0.20 -0.14 0.16 -0.27 -0.29 0.06 0.43 0.12 -0.12 -0.06 0.00

30 - 60 cm DEM Elev Slope CI LS TPI PO CA CS MCA TWI MRVBF VD

Sand -0.19 0.03 -0.23 0.09 -0.13 -0.16 0.00 0.19 0.17 0.14 0.07 0.11

Silt 0.17 0.05 0.22 -0.03 0.14 0.10 -0.04 -0.13 -0.19 -0.15 -0.08 -0.03

Clay 0.12 -0.11 0.13 -0.11 0.05 0.15 0.04 -0.17 -0.06 -0.07 -0.03 -0.14

C (g kg-1) 0.11 -0.23 -0.02 -0.25 0.21 0.20 -0.09 -0.17 -0.14 -0.05 0.06 -0.21

N (g kg-1) -0.14 -0.17 -0.33 -0.19 0.14 -0.06 -0.10 0.09 -0.14 0.01 0.19 -0.12

C:N 0.31 -0.17 0.32 -0.19 0.15 0.39 0.00 -0.31 -0.04 -0.16 -0.14 -0.26

C Stock (kg m-2) -0.01 -0.26 -0.25 -0.27 0.12 -0.01 -0.06 -0.01 -0.10 -0.06 0.19 -0.14

pH -0.36 -0.22 -0.58 -0.12 -0.38 -0.31 0.15 0.33 0.29 0.16 0.32 0.08

CF (% vol.) -0.13 0.05 0.29 0.19 -0.21 0.29 0.24 -0.11 0.31 0.34 -0.19 -0.01

BD (g cm-3) -0.44 -0.21 -0.10 -0.02 -0.44 -0.13 0.40 0.23 0.51 0.40 0.27 0.12

Saturation (% vol.) 0.44 0.21 0.10 0.03 0.44 0.13 -0.40 -0.23 -0.51 -0.40 -0.27 -0.12

PWP (% vol.) 0.13 -0.16 0.10 -0.16 0.09 0.18 0.01 -0.18 -0.09 -0.07 -0.01 -0.18

FC (% vol.) 0.37 0.02 0.17 -0.11 0.33 0.22 -0.22 -0.28 -0.38 -0.30 -0.17 -0.21

AWC (% vol.) 0.45 0.19 0.18 0.00 0.43 0.16 -0.35 -0.26 -0.51 -0.40 -0.26 -0.14

SWHC (% vol.) 0.32 0.06 -0.10 -0.14 0.35 -0.11 -0.34 -0.06 -0.47 -0.44 0.00 -0.07

60 - 100 cm DEM Elev Slope CI LS TPI PO CA CS MCA TWI MRVBF VD

Sand -0.33 0.01 -0.06 0.08 -0.01 -0.13 -0.04 0.05 -0.02 0.14 0.07 0.11

Silt 0.19 0.03 0.10 -0.06 0.08 0.12 -0.02 0.00 -0.04 -0.11 -0.05 -0.17

Clay 0.34 -0.04 0.00 -0.08 -0.06 0.08 0.08 -0.08 0.07 -0.12 -0.06 0.00

C (g kg-1) -0.06 -0.24 -0.38 -0.24 0.05 -0.01 -0.08 -0.04 -0.10 -0.01 0.11 0.02

N (g kg-1) -0.16 -0.27 -0.52 -0.23 0.02 -0.17 -0.05 0.01 -0.04 0.12 0.27 0.03

C:N 0.15 -0.05 0.15 -0.13 0.10 0.29 -0.09 -0.06 -0.19 -0.35 -0.25 -0.07

C Stock (kg m-2) -0.10 -0.21 -0.41 -0.17 -0.07 -0.06 0.16 0.07 0.00 0.06 0.08 0.03

pH -0.17 -0.13 -0.39 -0.10 -0.27 -0.14 0.06 0.24 0.17 0.10 0.14 0.39

CF (% vol.) -0.05 -0.30 -0.05 -0.29 0.39 0.14 -0.13 -0.40 -0.08 0.12 0.39 -0.22

BD (g cm-3) -0.34 -0.53 -0.26 -0.30 -0.07 0.03 0.30 -0.10 0.46 0.63 0.69 -0.22

Saturation (% vol.) 0.34 0.53 0.26 0.30 0.07 -0.03 -0.30 0.10 -0.46 -0.63 -0.69 0.22

PWP (% vol.) 0.30 -0.08 -0.08 -0.12 -0.05 0.07 0.06 -0.08 0.04 -0.11 -0.04 0.00

FC (% vol.) 0.41 0.19 0.09 0.05 0.00 0.06 -0.09 0.00 -0.18 -0.39 -0.36 0.07

AWC (% vol.) 0.40 0.44 0.25 0.22 0.07 0.03 -0.24 0.07 -0.38 -0.58 -0.60 0.12

SWHC (% vol.) 0.23 0.41 0.17 0.29 -0.22 -0.09 -0.03 0.30 -0.15 -0.37 -0.51 0.23
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 Using combinations of the 12 topographic grid layers (at 1 m spatial scale) as 

independent variables for predicting individual soil properties displayed varying 

results for different variables at the different depth ranges. The soil properties of 

sand, silt and clay had the highest statistical correlation with the topographic 

variables within the upper 15 cm of soil compared to the other 3 measured depths 

based on the number of times a statistical correlation was found between those 

variables and the 12 topographic indices (Table 3.4). Furthermore, the soil 

properties of C and N were not as well predicted as the combined C:N ratio in most 

cases, and C stock showed higher correlation with topography than total C 

concentration alone throughout the top 60 cm of soil. Predictions of soil pH and CF 

concentration both improved in the lower depths compared to the top 15 cm of soil. 

Soil BD was predicted by topography with the highest accuracy (based on R2) 

compared to all other tested soil properties. The topographic variables explained 

greater than 60% of the BD variation in the 15-30 and 60-100 cm depth ranges, 42% 

in the top 15 cm of soil, and 31.5% in the 30-60 cm range. The topographic variables 

were also well correlated with the derived soil hydraulic properties of AWC and 

SWHC, and the prediction strength of each variable was improved in the lower depth 

ranges compared with the top 15 cm of soil. Hydraulic properties within the depth 

range of 15-30 cm showed the highest correlation with topography compared with 

the other 3 tested depths. 

 The number of principle components necessary to account for 90% of the 

variation within the DEM were retained for further geostatistical analyses and 

mapping of soil properties. A total of 7 distinct principle components comprised of 

the 12 topographic grid layers were found to explain 90% of the landscape variance 

(cumulative proportion of variance explained = 0.925) (Table 3.5).  
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Table 3.5: Principle component analysis loadings for 7 components identified to explain over 90% of the 

landscape dataset variance. The 7 principle components were derived from a combination of the 12 individual 
topographic grid layers of DEM Elev = site elevation, CI = catchment index, LS = length-slope factor, TPI = 
topographic position index, PO = positive openness, CA = catchment area, = CS = catchment slope, MCA = 
modified catchment area, TWI = topographic wetness index, MRVBF = multi-resolution of valley bottom flatness, 
and VD = valley depth. 

Grid Layer PC1 PC2 PC3 PC4 PC5 PC6 PC7 
 Explained 

proportion 
of 
landscape 
dataset 
variance: 

0.325 0.238 0.118 0.078 0.069 0.058 0.039 
Total = 
0.925 

 

 

 Combining the multiple topographic grid layers through PCA did not have a 

positive effect on the predictive accuracy of many of the tested models when running 

MLR models (Table 3.6). The coefficients of determination (R2 values) from the MLR 

tests were higher for most of the soil variables at each depth compared with those 

created using the PCA grids rather than individual raster grids. However, in some 

instances, the coefficient of determination was the same or slightly increased when 

using the 7 PCA grids. Interestingly, the models had the hardest time explaining the 

variability in sand, silt and clay, and were better at explaining variability in pH, CF, 

BD and AWC.   
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  Depth (R2) 

 
0-15 cm 15-30 cm 30-60 cm 60-100 cm 

  Grids PCA Grids PCA Grids PCA Grids PCA 

Sand 0.299 0.298 0.175 N/A 0.0380 N/A 0.134 N/A 

Silt 0.237 0.197 0.144 0.095 0.0330 N/A 0.0190 N/A 

Clay 0.386 0.238 0.032 N/A N/A N/A 0.188 N/A 

Total C (g kg-1) 0.130 0.0390 0.0660 0.149 0.0460 0.0500 0.156 0.0990 

Total N (g kg-1) 0.230 N/A 0.115 0.0450 0.0920 0.108 0.261 0.245 

C:N 0.316 0.212 0.225 0.198 0.168 0.185 0.241 0.143 

C Stock (kg m-2) 0.196 N/A 0.167 0.0910 0.0930 0.0600 0.153 0.1000 

pH 0.249 0.320 0.378 0.302 0.458 0.395 0.271 0.284 

CF (% vol.) 0.282 0.287 0.403 0.147 0.332 0.382 0.405 0.158 

BD (g cm-3) 0.420 0.302 0.674 0.376 0.315 0.338 0.667 0.604 

AWC (%) 0.233 0.0660 0.673 0.336 0.311 0.284 0.555 0.454 

SWHC (%) 0.231 0.079 0.482 0.192 0.286 0.298 0.463 0.272 

 

 

 Geographically weighted regression increased the coefficient of determination 

(R2) for each of the tested soil variables within the upper 30 cm of soil (Figure 3.2). 

Additionally, the method of applying GWR for interpolating soil properties performed 

better than MLR alone throughout all 4 measured depths when testing the 7 PCA 

grid layers as predictor variables. Cross validation of both the MLR and GWR 

models were sufficient and displayed R2 values close to those found when running 

the model using all 60 data values (Figure 3.3; Table 5.2, Appendix I). The 7 PCA 

grids were most useful for interpolating BD overall within the 4 measured depths, 

and cross-validation displayed a general agreement between the measured values 

from the field and the predicted values created by the MLR and GWR models 

(Figures 3.3 and 3.4). This result demonstrates that running PCA on the raster grid 

layers in combination with GWR may be the optimal method for fine-scale soil 

Table 3.6: Resulting coefficients of determination for multiple linear regression (MLR) models using individual grid 

layers as predictor variables (12 total), and principle components as predictor variables (7 total), for predicting 
different soil properties within 4 different depths. Total C = total carbon concentration, Total N = total nitrogen 
concentration, C Stock = carbon stock, LCF = lab tested coarse fragment concentration, BD = fine fraction bulk 
density, AWC = available water capacity and SWHC = soil water holding capacity. 
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predictions for this site, and especially for predictions of BD. Although the R2 value 

of GWR models with the individual grid layers were higher than those of the GWR 

models using PCA grids in many instances, the models including the PCA grids are 

likely more robust and do not have collinearity between the topographic variables.  

 

 

Figure 3.2: Comparison of R
2
 values for MLR and GWR methods using the 7 PCA grids as predictor variables 

for interpolating various soil properties within the upper 15 cm of soil. SOM = soil organic matter, CF = coarse 
fragment concentration, BD = fine fraction bulk density and SWHC = soil water holding capacity. 
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Figure 3.3: Leave-one-out cross validation results comparing the multiple linear regression (MLR) and 

geographically weighted regression (GWR) models for interpolating the values of fine fraction bulk density (g cm
-3

).  
A = depth 1 (0-15 cm), B = depth 2 (15-30 cm), C = depth 3 (30-60 cm) and D = depth 4 (60-100 cm). Predictor 
variables = 7 PCA grids. Tested soil property = fine fraction bulk density (BD) (g cm

-3
). 

 



 72 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Output map of the interpolated values of fine fraction bulk density (BD) (0-15 cm) using Geographically 

Weighted Regression (GWR) and the 7 topographic grid layers produced through principle component analysis (PCA) 
as independent, predictor variables. 
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DISCUSSION 

 

Interpolated Soil Variability 

 

 The results from this study exemplify the usefulness of topographic raster 

data for the interpolation of numerous measured soil data on finer scales than 

previously studied within forested ecosystems. By successfully modeling the various 

soil properties responsible for dictating AWC as well as the SWHC throughout the 

site, important information about which topographic features may be influencing 

water patterns on a fine-scale was discovered. Although many of the relationships 

may not be representative of cause and effect, these results do provide insight into 

which topographic features should be further explored to determine their ultimate 

influence on the variability in AWC. Significant relationships were revealed for nearly 

all measured and derived soil variables when using independent topographic 

variables as predictors and using both MLR and GWR methods. The models 

produced using GWR exceeded the accuracy of MLR models alone. However, in 

terms of practical forest management implications within these ecosystems, the 

prediction accuracy of soil water resources across the study site may not be 

particularly useful. Due to the relatively low (~ 0.50 or less) coefficient of 

determination (R2) values created by the various models for many of the soil 

properties it becomes questionable as to whether forest managers can make ground 

based decisions based on models that explain roughly 50% or less of the variation in 

the soil data. For example, the models created for predicting sand and clay 

concentrations and SOM explained less than 50% of the measured variability within 

all four depth ranges. When considering the location of specific site prescription 

treatments on the ground that attempt to improve tree seedling performance, a 50/50 

guess of local soil characteristics at a given site is not very reliable. Nonetheless, the 

models produced for BD, LCF and SWHC resulted in higher R2-values, which 

revealed important relationships between these soil properties and certain 

topographic features, and can help improve forest management within the hot, dry 
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Douglas-fir ecosystems within BC in the future. Being able to identify areas of 

abundant coarse fragments or increased compaction based on digital elevation 

models of a site could improve applications of site preparation to maximize soil water 

use because soil bulk density (Bulmer and Simpson 2005; Gupta and Larson 1979) 

and coarse fragment concentration (Poesen and Lavee 1994; Liu and She 2017; 

Zhang et al. 2016; Ma et al. 2010) have such a large role in dictating soil available 

water.  

 In terms of overall site variability, the results from this study demonstrate how 

many of the measured soil properties varied little across the site. This is somewhat 

surprising as it is generally believed that small scale variability commonly exists 

within small geographic areas, and is often attributed to the sites heterogenous 

relationship with the five-main soil forming factors outlined by Jenny (1994). 

Excluding coarse fragment concentration, the soils at the Isobel site generally 

showed less variability in physical properties (ie. sand, silt, clay, BD) compared with 

chemical properties (ie. carbon, nitrogen, C:N ratio). This finding is consistent with 

results from similar studies which look at the fine-scale variability of physical and 

chemical soil properties (Amador et al. 2000). However, the large variability in 

coarse fragment concentration found throughout the Isobel site is a notable 

discovery as this soil property has a strong influence on the water holding capacity 

of soils and can drastically alter the growing conditions of a microsite within water 

limited ecosystems (Cousin et al. 2003; Baetens et al. 2009). 

 Despite the apparent low variability in some soil properties, certain terrain 

attributes were highly correlated with soil properties at different depths of the profile, 

and were consistent with findings of other soil spatial analyses conducted within 

much larger areas. Romano and Palladino (2002) found that the inclusion of slope 

gradient and slope aspect both improved the prediction strength of soil hydraulic 

parameters within the topsoil of a 32-square kilometer drainage in Italy. Florinsky et 

al. (2002) also discovered slope gradient to hold significant correlations with soil 

water within the 0-30 cm depth range throughout the growing season of two 

consecutive years, however, this relationship was not consistent at lower depths and 



 75 
 

did not exhibit statistical correlations beyond 30 cm up to 1.2 m. This result is 

somewhat intuitive because as slope increases, the velocity of water flow also 

increases, so the rainfall that is received and infiltrated per unit area on the ground is 

decreased, while runoff area increases and re-distributes the water to lower slope 

locations where it either infiltrates or evapourates. Thus, increased slope gradient 

results in decreased overall soil moisture (Florinsky et al. 2002). Similarly, the 

topographic covariate grids of slope and LS-factor (a function of slope length) in my 

study significantly correlated with the soil properties of PWP, FC, AWC and SWHC 

within the 0-15 cm depth range at the Isobel Lake site. Florinsky et al. (2002) also 

found that the covariate layer representing catchment area held significant 

relationships with soil water throughout the entire 1.2 m soil profile. However, 

significant correlations between soil AWC and SWHC with catchment area within the 

30-60 cm depth range and with only AWC in the 60-100 cm range were present in 

my study. Furthermore, Florinsky et al. (2002) did not discover any R2 values for soil 

property predictions greater than 0.37. Similarly, many of the R2 values found in my 

study for soil hydraulic predictions were at or below 0.37. However, depending on 

the topographic variable and the depth range explored, R2 values exceeded 0.40 

and sometimes even greater than 0.50 (Table 3.7). Although it should be noted that 

the DEM used in Florinsky‟s study was produced at a 15-m resolution using a GPS 

technique, whereas mine was produced at a 1-m resolution using highly detailed 

LiDAR data, which could explain the improved accuracy of some of my regression 

models. In addition, the covariate grid layer representing site elevation was also 

selected for the prediction of SWHC within the lower 3 measured depths (15-30, 30-

60 and 60-100 cm) and produced R2 values greater than those within the top 15 cm 

of soil. This result may be due to random noise that can occur within the upper 

layers of a soil, as factors such as wind and rain erosion, animal disturbance, as well 

as potential machine disturbance during logging operations have more effect on 

altering the surface soil layers compared to subsoil layers.  

 Certain covariate grid layers that describe hydraulic tendencies on the 

ground, including TWI and MCA, were expected to be adequate predictors of the 

derived soil hydraulic properties at this site. Both TWI and MCA did not correlate well 
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with AWC or SWHC within the top two measured depth layers, however, they did 

exhibit better relationships within the 30-60 and 60-100 cm depth ranges (Table 3.4). 

Additionally, the covariate TWI was selected (via stepwise regression) for use within 

the prediction models for SWHC within the 0-15, 15-30 and 60-100 cm depth 

ranges, and MCA was selected for the prediction of SWHC within the 0-15 and 30-

60 cm depth ranges, which supports their usefulness when determining the 

topographic influence on manipulating soil water resources.  

 In general, coefficients of determination of 0.5 or less are typical for the 

prediction of soil properties (Ryan et al. 2000; Herbst et al. 2006), which is 

consistent with most of the predictions made by the different regression models 

within this study. Due to the high number of sampling points within a relatively small 

area, it was expected that topography would be able to interpolate the observed soil 

properties accurately. However, one reason as to why most of the models were 

below 50% accurate may be a result of the apparent variability in measured soil 

properties far outweighing the variability in topography. The study site at Isobel Lake 

covers a relatively uniform hill slope with very minor peaks and gullies, meaning that 

most of the topographic raster data was similar across the site. Many of the 

measured soil properties, however, were not found to be uniform and did not 

necessarily follow a particular pattern with topography, making it difficult for the 

model to interpolate.  

 The specific soil properties of clay, silt and sand concentrations did not vary 

considerably between samples (as indicated by the standard deviations of each 

averaged variable as well as the fact that roughly 90% of the tested soils were 

classified as a Loam textural class). However, the properties of total C, total N, BD 

and CF concentration did show considerable amounts of variability throughout the 

site, despite the little variability in topographic features. The ability of the different 

regression models to more accurately predict the properties of CF, BD and total C as 

compared to soil texture is logical as these soil properties showed considerable 

amounts of short-range variability and thus likely varied more with slight topographic 

differences. For the most part, models which predicted soil texture (sand, silt and 
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clay), total C and total N had higher coefficients of determination within the topsoil 

than in the subsoil. In contrary, coefficients for the soil properties of pH, CF, BD, 

AWC and SWHC were improved in the lower soil layers compared to the topsoil 

layer. This may have occurred because the influence of topography is greater in the 

subsoil, while in the topsoil other forms of influence (eg. anthropogenic influence, 

wind exposure, rain erosion etc.) can be more prominent and can create random 

spatial distributions that are not well related to topography (Herbst et al. 2006). 

  

Effect of Increased Kernel Radii on Soil Interpolations 

 

 Previous studies have shown that soil data often have a higher proportion of 

variation at short distances than landform surfaces (Burrough 1983; Gessler et al. 

1995; Oueslati et al. 2013). Because soil variability commonly outweighs the 

variability in landscape data on small scales, adjusting the kernel radius to smooth 

the topographic raster data was not expected to improve the prediction accuracy of 

the regression equations. With the LiDAR data projected at a 1 m spatial resolution, 

most of the landscape variation is captured and will contain the maximum amount of 

detail possible compared to using a kernel radius of 2 m or 3 m which will smooth 

out the difference between individual grid cells, and, therefore will lose some of the 

specific topographic detail. Kuo et al. (1999) discovered that increasing the grid cell 

size of a DEM misrepresented the curvature of the landscape, therefore resulting in 

less accurate soil moisture predictions during dry seasons within a watershed in 

central New York. Because soil properties often have higher variation over shorter 

ranges than topography does, the added detail within 1 m digital elevation model is 

important for model fitting and for understanding the relationship between the 

distributions of certain soil properties in relation to minor changes in topography.  
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Evaluation of Methodologies 

 

 The use of PCA methods within soil spatial mapping studies is a data-driven 

approach to reduce the dataset and to determine important covariate landscape 

variables (Levi and Rasmussen 2014). This approach selects the covariate data that 

account for the greatest range in variability within the landscape raster data, and 

eliminates redundant information from the models (Holleran et al. 2015). By 

combining the different covariate layers and reducing redundancy within the 

landscape dataset, the resulting coefficient of determination (R2) value was reduced 

for many of the tested soil properties when compared with the models using the 

individual grid layers themselves. Although the resulting R2 value was reduced for 

many model predictions, the models using the PCA grid layers are likely more robust 

and, therefore, more reliable when considering the ability for landscape features to 

predict various fine-scale soil properties because PCA grid layers account for 

collinearity among predictor variables. If the landscape data is not reduced to 

account for collinearity, then multiple raster grid layers that share similar topographic 

information may be selected for predictions as they will improve the output prediction 

accuracy of the regression models. However, the regressions do so by adding 

topographic information that is repeated within other selected grid layers thereby 

increasing error (Levi and Rasmussen 2014). Another reason why the models 

including PCA grid layers did not perform as well as models using individual grids for 

certain soil properties could be due to the scale at which the landscape data were 

collected. The LiDAR data from the Isobel Lake site include a very high level of 

detail when measured at a 1 m spatial scale, and by combining multiple grids 

through PCA, some important information from the complete dataset is lost. The 

detail that is eliminated from the PCA procedure could help to explain the measured 

variability of certain soil properties on a fine-scale.      

 The fact that GWR outperformed MLR methods for soil property interpolations 

is not surprising, as GWR considers the non-stationary assumption with regards to 

soil-topography relationships. When attempting to model the spatial distribution of 

soil properties within small landscapes and on fine-scales similar to the Isobel Lake 
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study site, the concept of heterogeneous spatial relationships between soil 

properties and topographic relief is important to consider. Because the soils 

measured at the Isobel Lake site showed considerable short-range variability in 

some properties that directly influence soil water availability (ie. coarse fragment 

concentration, carbon concentration and fine fraction bulk density), understanding 

their intrinsic relationship with certain topographic parameters at different locations 

throughout the landscape is fundamental for accurate representations. As a result of 

highly variable soil properties on such a fine scale, the practice of applying a single 

set of regression parameters (ie. through MLR) to all soil variables across an entire 

hillside (that is otherwise relatively uniform in topographic shape) likely did not 

capture the full extent of the relationship between the environmental covariates and 

soil parameters. This likely resulted in a lower coefficient of determination.   

 

CONCLUSION/SUMMARY 

 

 In general, GWR outperformed the MLR models in all cases, and the use of 

PCA derived environmental covariate layers produced more robust and reliable 

models than the models which utilized the individual covariates themselves. Neither 

MLR nor GWR methods overestimated the soil properties. Interpolated residuals for 

both methods show a relative agreement with soil values that are possible for this 

site based on the observed data. However, in terms of practical forest management 

objectives, the utilization of topographic grid layers for predicting areas of moisture 

stress and surplus on the ground is still relatively risky when considering that most 

models explained roughly 50% or less of the measured soil variability at this site. 

Nonetheless, certain topographic features had stronger relationships than others 

with specific soil properties and the importance of those topographic variables can 

be further studied in future research projects. 
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 Foresters tasked with managing the hot, dry subzones of the interior Douglas-

fir forests surrounding Kamloops face considerable challenges as average 

temperatures are projected to climb and drought conditions are expected to increase 

into the future. With respect to tree seedling regeneration and sustainable harvest 

rotations, the ability to predict and quantify available soil water resources throughout 

proposed harvested areas will become increasingly desirable to ensure that best 

management practices are applied to specific areas. By combining geostatistics with 

readily available topographic raster data, certain relationships between soil 

properties and topography were revealed for these ecosystems. As highly-detailed 

topographic data for the province of BC becomes more and more accessible to 

forest managers, the value of identifying these relationships on both coarse and fine-

scales will save time and money when conducting soil prediction surveys into the 

future. Further research could include applying a combined GWR-kriging approach 

for fine-scale soil property predictions, as this method has been shown to be 

successful when tested on simulated datasets compared to normal GWR (Harris et 

al. 2010). Additionally, a more systematic sampling design could be applied to 

another site within the IDFxh2 to ensure that soil pit locations capture the entire 

range of possible topographic distinctiveness, whereas the location of my soil pits 

were determined with the intention of characterizing soil properties across the 

landscape, but failed to consider different extremes in topographic relief. 
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CHAPTER 4.0: SIGNIFICANCE AND CONCLUSION 
 

 The apparent variability in the measured soil properties within the 16-ha site 

was not as large as was originally expected. Most soil physical properties generally 

displayed lower fine-scale variation than chemical properties, with the exception of 

coarse fragment concentration – which had the highest level of variability out of all 

measured properties. Coarse fragments have a large effect on the amount and 

distribution of soil water availability. Because of the heterogeneous concentration of 

coarse fragments within the soil across the site, the variability in soil available water 

will likely follow a similar pattern. Although soil properties, including organic matter 

content, soil texture and bulk density also affect water availability within a soil profile, 

their degree of influence in comparison to coarse fragment concentration is relatively 

low, and is outweighed by the water loss attributed to coarse fragment volume. In 

terms of management objectives within IDFhx2 ecosystems, the overall variation in 

soil water resources did not necessarily follow strong predictive patterns with 

topography, and did not change significantly from one end of the study site to the 

other. 

  The results from the power analyses, as well as the general lack of AWC‟s 

predictable variability based on topographic features demonstrates that highly 

intensive soil sampling at any given site may be required if forest managers want to 

have a true understanding of the entire water holding capabilities of the soil. My 

study demonstrates that even when sampling on relatively uniform topography, the 

amount of variation in coarse fragments and available water far exceeds what can 

be captured in one or two pits, and sites that are comparatively heterogeneous in 

topography are very likely going to require even more samples to gain an accurate 

representation. 

 While many of the regression equations between soil water availability and 

topographic variables held relatively weak relationships, the models did provide 

insight into topographic covariates that may be influencing water availability on fine 
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scales. Despite the uniform topography across the Isobel Lake hillside, certain 

terrain attributes such as slope and LS-factor displayed significant relationships with 

fine-scale water distribution within the top 30 cm of soil, and shows a general 

agreement with what we already know about topographic influence on the variability 

of soil properties over much larger scales. This includes the dependence of water 

availability on slope gradient and elevation (Florinsky et al. 2002; Romano and 

Palladino 2002), and that many regression models using topography for explaining 

variability in soil available water typically do not produce R2 values greater than 0.50 

(Florinsky et al. 2002). Although these relationships are important to quantify on fine-

scales, due to the relatively low levels of predictive accuracy (R2 values < 0.50) of 

most models it becomes uncertain as to whether or not attempting this type of 

intensive sampling procedure over such a small area will be worth the time and 

effort. If, for example, scalping the forest floor prior to planting is proven to be a 

successful method for improving soil water availability for new Douglas-fir seedlings, 

then it can be suggested that the entire harvested area be scalped as it will likely be 

less effort than conducting an exhaustive soil sampling design similar to what was 

completed in this study.  

 Future research involving the modeling of soil properties using terrain 

attributes could improve fine-scale sampling design by uncovering important 

relationships between individual and combined topographic grid layers with soil 

properties. Improving our understanding of these crucial relationships on 

progressively smaller scales, we can begin to design soil sampling methods that are 

cost and time effective while still providing adequate information about a site‟s 

overall soil variability. For example, the location of the soil pits within this study were 

distributed in a way that I thought would capture the apparent variability in soil 

properties throughout the entire site, but I failed to consider the topographic 

placement of each pit. When attempting to quantify the true relationship between soil 

variation and different topographic features it is important that local extremes in 

topography are sampled to provide the model with the best, and most diverse, 

information available at the site. Within other landscapes that exhibit more distinct 

topographic relief, R2 values within the range of 0.39 – 0.82 are common (Odeh et 



 89 
 

al. 1994; Gessler et al. 1995; Li et al. 2017). To clarify, in a typical predictive soil 

mapping study, the soils located in valley bottoms and ridge peaks are very 

important to consider as these areas have the highest divergence in topography, 

and will likely display different soil characteristics as a result. In addition, sampling in 

an area that has considerably more topographic variability would likely result in 

stronger relationships between the multiple topographic grid layers and certain 

patterns in soil variability. If future studies can begin to uncover stronger 

relationships between topography and soil variation than what was discovered here, 

then forest management within these ecosystems could benefit as less soil 

measurements on the ground would be required to accurately describe the sites 

water availability.  

 Combining growth data of seedlings planted throughout the site over multiple 

years with soil data could provide better information to managers working within dry, 

forested ecosystems. To conclude that fine-scale soil water availability within these 

sites is the absolute limiting factor to seedling growth and success, it would be 

necessary to quantify the variability in seedling growth across the study site and to 

map its distribution in relation to soil water availability. Because the 2017 growing 

season was unusually dry, it would also be very important to monitor seedling 

growth over many years following their establishment to evaluate the residual effects 

of low or high-water availability throughout a seedlings lifetime, and to be able to 

quantify the effects of drought conditions on longer term seedling survival. 

 The effects of climate change on species distribution patterns, tree growth, 

and overall site productivity is an issue that has gained an immense amount of focus 

over the last several decades throughout Canada and the rest of the world (Mathys 

et al. 2014; Kirchen et al. 2017; Littke et al. 2018). The future sustainability of British 

Columbia‟s historically successful forest industry is uncertain, and forest managers 

are raising concern over the unpredictability of local climate adaptations and its 

influence on tree regeneration strategies. Depending on the geographic region and 

associated climate change situation, the results of increasing temperatures will vary, 

thereby making it crucial to study and understand the complex interrelationships 
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shared by forests and local climate variables. In areas similar to the Isobel Lake 

study site, where annual drought is common during the growing season, seedling 

regeneration and forest productivity is likely to be greatly affected by climate change, 

and could significantly alter the way we manage these dry ecosystems in the future. 

 The relationships between Douglas-fir trees with climate have been strongly 

linked to water limitations (Littke et al. 2018), however, the variability in shallow soil 

available water supply within Douglas-fir forests is relatively uncertain, and therefore 

justifies the need to further study these relationships. Furthermore, recent research 

suggests that variation in soil properties will influence the distribution and growth of 

many different tree species and that current maps which represent coarse-resolution 

interpretations of soil parameters were insufficient and need to be refined (Coops 

and Waring 2001; Herbst et al. 2006; Mathys et al. 2014). Temperature and 

precipitation greatly affect soil available water supply within Douglas-fir forests, and 

future climate change models predict a decline in available soil water depending on 

the severity of temperature increases. Therefore, forest managers must gain a deep 

understanding of forest soil variability and its relationship with climate, topography 

and above all, water availability. The quantification and long-term monitoring of 

variability in soil available water on both large and small areas will greatly improve 

our understanding of how climate change may impact different forest types through 

time. 

 The results of this study provide a detailed look at the level of spatial soil 

variability that occurs within small areas of the dry IDF, and how that variability 

relates to available water. Through the effective quantification and monitoring of 

available soil water throughout the past 3 growing seasons, in addition to exploring 

its relationship with certain topographic features, forest managers are provided with 

an introductory look into soil water dynamics within these sites and can begin to link 

this information with future climate change models. Additionally, this thesis highlights 

the usefulness, or lack thereof, of fine-scale interpolations of measured soil 

properties within forested landscapes, and demonstrates the need to sample local 

soils to gain accurate representations of available soil water at any given site. 
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Although the variability in physical soil properties was not particularly large at the 

Isobel Lake site, coarse fragments did have a large negative effect on the soil water 

holding capacity, and therefore provides merit for more precise understandings of 

forest coarse fragment variability when considering the overall influence climate 

change may have on tree seedling regeneration and growth. By providing a large 

fundamental dataset of physical and chemical soil properties in relation to 

topography, and how each property might influence plant available water supply, soil 

maps within these ecosystems can be refined and provide more information to help 

alleviate the uncertain productivity of hot, dry Douglas-fir forests into the future.  
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    GWR (7 PCA Grids) MLR (PCA Grids) 

Depth 
(cm) Variable Average R2 SD Average Adj. R2 SD 

0-15 Sand 0.410 0.010 0.300 0.009 

 
Clay 0.330 0.010 0.234 0.003 

 
SOM 0.156 0.009 0.038 0.015 

 
CF 0.431 0.010 0.276 0.048 

 
BD 0.459 0.012 0.277 0.063 

 
SWHC 0.327 0.010 0.082 0.014 

15-30 Sand 0.135 0.008 N/A   

 
Clay 0.162 0.014 N/A   

 
SOM 0.204 0.007 0.146 0.008 

 
CF 0.313 0.008 0.146 0.012 

 
BD 0.440 0.006 0.379 0.006 

 
SWHC 0.306 0.009 0.193 0.011 

30-60 Sand 0.166 0.006 N/A   

 
Clay 0.098 0.005 N/A   

 
SOM 0.204 0.002 0.049 0.002 

 
CF 0.462 0.013 0.381 0.013 

 
BD 0.409 0.012 0.335 0.018 

 
SWHC 0.414 0.009 0.300 0.009 

60-100 Sand 0.251 0.004 N/A   

 
Clay 0.272 0.004 N/A   

 
SOM 0.244 0.016 0.089 0.035 

 
CF 0.288 0.004 0.159 0.005 

 
BD 0.684 0.004 0.604 0.003 

  SWHC 0.381 0.005 0.28 0.012 

 

 

Table 5.2: Comparison of multiple linear regression (MLR) and geographically weighted regression (GWR) models 

using the 7 created principle component analysis (PCA) grids as predictor variables for various soil properties at all 4 
measured depths. Average R

2
 values are created by running 10 tests with training datasets using leave-one-out cross 

validation. N/A values means no significant predictors were identified at the p = 0.10 level. SOM = soil organic matter, 
CF = coarse fragment concentration, BD = fine fraction bulk density, and SWHC = soil water holding capacity. 


