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Abstract

Bird communities have long been surveyed as key indicators of ecosystem health and
biodiversity. Adoption of Autonomous Recording Units (ARUs) to perform avian surveys
has shifted the burden of species recognition from “birders” in the �eld, to “listeners”
who review the ARU recordings at a later time. The number of recordings ARUs can
produce has created a need to process large amounts of data. Although much research is
devoted to fully automating the recognition process, expert humans are still required
when entire bird communities must be identi�ed. A framework for a Decision Support
System (DSS) is presented which would assist listeners by suggesting likely species. A
unique feature of the DSS is the consideration of the recording “context” of time,
location and habitat as well as the bioacoustic features to match unknown vocalizations
with reference species.

In this thesis a data warehouse was built for an existing set of bioacoustic research data
as a �rst–step to creating the DSS. The data set was from ARU deployments in the
Lower Athabasca Region of Alberta, Canada. The Knowledge Discovery in Databases
(KDD) and Dimensional Design Process protocols were used as guides to build a
Kimball–style data warehouse. Data housed in the data warehouse included �eld data,
data derived from GIS analysis, fuzzy logic memberships and symbolic representation of
bioacoustic recording using the Piecewise Aggregate Approximation and Symbolic
Aggregate approXimation (PAA/SAX). Examples of how missing and erroneous data
were detected and processed are given. The sources of uncertainty inherent in ecological
data are discussed and fuzzy logic is demonstrated as a soft–computing technique to
accommodate this data.

Data warehouses are commonly used for business applications but are very applicable
for ecological data. As most instructions on building data warehouse are for business
data, this thesis is o�ered as an example for ecologists interested in moving their data to
a data warehouse. This thesis presents a case–study of how a data warehouse can be
constructed for existing ecological data, whether as part of a DSS or a tool for viewing
research data.
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Chapter 1

Introduction

Autonomous Recording Units in Avian Surveys

Avian surveys have long been used to study individual bird species, to estimate
ecosystem biodiversity and as an indicator of environmental health because birds are
widespread across many habitats, are sensitive to environmental change and are
relatively easy to survey (Brandes, 2008; Gregory and Strien, 2010; Chambert et al.,
2018). The traditional method of conducting avian surveys relies on expert human
“birders” who locate themselves at predetermined locations and record all the birds they
can identify by sound and sight within the time and distance stipulated by a
standardized protocol such as the North American Breeding Bird Survey (BBS) (Sauer
et al., 2013). These surveys are limited by the availability of trained birders and the
logistics of moving birders to survey sites during the time birds are most active. These
restrictions force researchers to choose between the number of sites which can be
surveyed and the intensity to which each site is sampled. This has lead to a need to
develop techniques which improve avian surveys in order to improve the information
they provide to science and conservation e�orts (Brandes, 2008). One such technique is
the adoption of Autonomous Recording Units (ARUs).

ARUs are robust, computer–controlled acoustic recorders which can be left in the �eld
to record at a preset intervals. They have been shown to have the potential to expand
the capacity of avian monitoring (Hutto and J. Stutzman, 2009; Rempel et al., 2005;
Brandes, 2008; La and Nudds, 2016) chie�y because they decouple the occurrence of an
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acoustic event (e.g.: a bird song) from the analysis of that event (e.g.: the species
determination by an expert birder). In contrast to the traditional bird survey technique,
ARUs can be deployed and retrieved by non-specialized �eld technicians, after which
the recordings are analyzed by experts human “listeners.” While this has greatly
increased the acquisition of the avian survey recordings, the method has introduced two
problems. The analysis of large amounts of bioacoustic recordings (Zhang et al., 2016)
and the dissociation of an acoustic event from the conditions under which it occurred.

Ideally, identifying bird species from ARU recordings could be completely automated,
and a great deal of work is being done in this �eld. However, omnidirectional �eld
recordings present many challenges to computer processing which are trivial to human
observers including duets, choruses of overlapping songs and species with regional
dialects and species with very large repertoires and improvisational songs (Brandes,
2008) and are prone to errors (Chambert et al., 2018). Consequently most projects
concentrate on the identi�cation of one or a few species (Fagerlund, 2004) and most still
rely on expert–human con�rmation (Shon�eld and Bayne, 2017b; Darras et al., 2017).
Therefore, procedures to identify all species on a recording still requires the judgment of
expert human listeners (Wimmer et al., 2013; Keen et al., 2014).

The dissociation of acoustic events from their environment is a less obvious problem for
ARU processing. While listeners have the advantage of repeatedly listening to di�cult
recordings, visualizing sonograms, accessing reference recordings and the advice of
other listeners, they must make their species determination based solely on the
bioacoustic signal. In contrast, birders conducting traditional �eld surveys bene�t from
experiencing the temporal and spatial conditions under which a vocalization occurred.
This knowledge of the environment, hereafter called “context”, includes time–of–day,
time–of–season, geographic location and habitat. With an awareness of context and
knowledge of behaviour, migration patterns, distribution and habitat preference of
candidate species, an experienced birder can compose a list (perhaps subconsciously) of
birds likely to be encountered. For example, Dusky Flycatcher (Empidonax oberholseri
Phillips, AR, 1939) and Hammond’s Flycatcher (Empidonax hammondii (Xántus de Vesey,
1858)) have very similar songs but E. oberholseri prefers shrubby open sites while E.
hammondii prefers sites with closed canopies (Mannan, 1984; Sedgwick, 1975). A birder
may instinctively feel that, “this seems like Dusky habitat.”

The e�ort to keep pace with the number of recordings which ARUs can create is
signi�cant (Agranat, 2009; Shon�eld and Bayne, 2017b; Zhang et al., 2016) . Since fully
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automated recognition of all species in an avian community is still beyond the scope of
current computer systems (Truskinger et al., 2015; Chambert et al., 2018; Darras et al.,
2017); methods of assisting human–based processing are necessary to manage the
increasing number of ARU recordings being acquired (Charif and Pitzrick, 2008;
Shon�eld and Bayne, 2017b). To meet this need, Decision Support Systems (DSS) for
bioacoustic processing are being developed (Truskinger et al., 2015, 2011) but the
systems so far proposed rely only on identifying similar patterns within the acoustic
signal. This thesis presents the framework for a software–based DSS which would use
both bioacoustic and context data to provide listeners with a list of suggestions for
species likely to have made a vocalization. To the author’s knowledge, including context
in a DSS for bioacoustic recognition is a novel approach. The complete development of a
DSS is beyond the scope of this thesis, what is presented here is the �rst–step towards
its development: a data warehouse to manage the existing bioacoustic data.

Data Warehouse for the Purposes of Knowledge Discovery

The techniques to match acoustic and context data with reference recordings and life
history knowledge fall within the discipline of data mining, also called Knowledge
Discovery in Databases (KDD). Data mining and data warehouses have been called the
“architectural foundation of a decision support system” (Inmon, 1996) because a
properly developed data warehouse promotes e�cient access to reliable data by
collecting, cleaning and grouping data from a variety of sources in a standardized format
(Hinton, 2006). The development of a data warehouse extends beyond its utility in the
proposed DSS. Loading data into a data warehouse is a necessary step in the adopting of
a “Big–data culture” where diverse data is combined, re–purposed and from which
patterns can be discovered which in turn can motivate new lines of research (Hampton
et al., 2013; Palmer et al., 2005).

Research Objective

The focus of this research was to construct a data warehouse for existing bioacoustic
data and context data in order to facilitate knowledge discovery. The data warehouse
was designed as a component of a Decision Support System to assist human listeners
processing bioacoustic recordings. As data warehouses were originally developed and
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have been used primarily for business applications, particular attention was given to the
unique challenges presented by ecological data. It is hoped that the �ndings of this
thesis will provide a useful example for other ecologists wishing to move their data into
a data warehouse.

The remainder of this thesis is structured as follows: Chapter 2 discusses data
management in ecology and describes the structure of a data warehouse. Additionally,
several techniques not widely used in ecology are introduced. Chapter 3 presents the
steps taken to process the data and the creation of the data warehouses. Conclusions are
presented in Chapter 4.
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Chapter 2

Discovering Knowledge in Ecological Data

Introduction

In this chapter an outline of the Decision Support System (DSS) framework, proposed in
Chapter 1, is presented so the reader can understand the function the data warehouse
was designed to serve. This is followed by a description of the data warehouse structure,
as developed by Ralph Kimball (1996), with comparisons to the two most common ways
ecological data is stored: spreadsheets and transactional databases. Two unique
challenges with bioacoustic data are then discussed. Firstly, the representation of
acoustic �les, where the techniques of Piecewise Aggregate Approximation (PAA) (Yi
and Faloutsos, 2000; Keogh et al., 2000) and Symbolic Aggregate Approximation
(PAA/SAX) (Lin et al., 2003) are illustrated with an example. Secondly, the sources of
uncertainty in ecological data are discussed and Fuzzy Logic (Zadeh, 1965) is o�ered as
one technique suitable to represent imprecise ecological attributes. Examples are given
to illustrate the use and derivation of fuzzy sets and how they can be employed in a
fuzzy inference system.

A Decision Support System for Bioacoustic Processing

The proposed DSS would contribute to a listener–based processing system by
suggesting a list of likely species for each acoustic event, based on characteristics of the
acoustic signal and the recording context. Figure 2.1 presents the framework for the
DSS. Acknowledging that there are many challenges, such as isolating individual
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vocalizations from a bioacoustic recording, conceptually the steps of the DSS are as
follows:

First, data are collected as inputs. Two types of data are used by the DSS, �eld data and
reference data. Field data includes bioacoustic �eld recordings, associated metadata and
the recording context. Reference data includes acoustic reference recordings and life
history knowledge for each species in the study area.

Second, input data are codi�ed and organized into species pro�les and a recording
pro�les. A species pro�le, comprised of acoustic features extracted from reference
recordings and habitat, range and behaviour characteristics, is created for each species
in the study area. A recording pro�le comprised of extracted acoustic features, spatial
and temporal recording context is created for each acoustic event on the bioacoustic
recordings.

Third, a comparison is made between the recording pro�le of each unknown acoustic
event and each species pro�le. The strength of a match is based on both the similarity of
acoustic features and the equivalence of the recording context with the habitat, range
and behaviour.

Fourth, for each acoustic event, a ranked list of potential species is presented to listeners
based on the pattern matching.

Fifth, for each acoustic event a species determination is made by the listener based on
their appraisal of the acoustic event and the suggestions made by the DSS. This
assessment is recorded in the data repository and could be used to re�ne the species
pro�le made in step two.
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Figure 2.1: Components of a Decision Support System proposed to facilitate species iden-
ti�cation by humans from bioacoustic recordings. The grey box indicates the focus of this
research which was the creation of a data warehouse for bioacoustic data.

The reference patterns for each candidate species would be derived from reference
recordings combined with knowledge of distribution and life–history information.
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While some reference knowledge can be gathered from sources such as the Macaulay
Library at the Cornell Lab of Ornithology (www.birds.cornell.edu) and the Bird Studies
Canada Breeding Bird Atlas (www.birdscanada.org), the DSS can also learn from
identi�ed acoustic events on ARU recordings.

Storage Structures for Ecological Data

Knowledge in data takes the form of patterns which indicate relationships between
system components. The process by which knowledge is found in databases is called
Knowledge Discovery in Database (KDD), also called data mining.

Although it is possible to mine data from many data structures, the right data structure
will improve the chances of success (Inmon, 1996). Often ecological data is stored in
minimally structured formats such as �at �les (e.g.: spreadsheets) which are not
conducive to knowledge discovery (Madin et al., 2007), do not adequately constrain data
to enforce data integrity (Jones et al., 2006) and do not allow researchers to easily view
data in novel ways.

A superior data management tool is the relational database (such as Oracle 12c, MySQL
and MS Access) which stores data in linked tables (called relations) and can both
constrain data input and allow data to be grouped and re–arranged. Two types of
database architectures, transactional databases and data warehouses, are suitable for the
management of ecological data.

The transactional database is designed to accurately manage changing data. To prohibit
erroneous data from being entered, the database is built to comply with normalization
rules which preclude redundancy within data rows (i.e., records) and between columns
(i.e., attributes) (Hillyer, 2005). As a consequence, a normalized database will have many
tables, each containing data related to one speci�c subject. Although this design will
enforce data integrity, the large number of tables and relationships increases the
complexity of extracting data.

For example, a transactional database designed to store data from vegetation surveys is
shown in Figure 2.2 and is comprised of seven tables and seven relationships. With this
structure, instead of recording the name of a particular plant in the UNDERSTORY table
each time it is found, a link is made to that species record in the PLANT_SPECIES table.



9

Here the name is recorded only once, thus eliminating the possibility of misspelled
entries or the use of outdated names which could occur if redundancy were allowed.

SITE
ID_SITE (PK)
SITE_NAME
PROJECT_NAME
LATITUDE
LONGITUDE
ELEVATION
SLOPE
ASPECT

ID_PLOT_SURVEY (PK)
ID_SITE (FK)
FIELD_STAFF (FK)
SURVEY_DATE

PLOT_SURVEY

FIELD_STAFF
ID_FIELD_STAFF (PK)
FIRST_NAME
LAST_NAME
EMPLOYEE_TYPE

ID_UNDERSTORY (PK)
ID_PLOT_SURVEY (FK)
ID_PLANT_SPECIES (FK)
ID_COVER_CLASS (FK)

ID_PLANT_SPECIES (PK)
COMMON_NAME
SCIENTIFIC_NAME
GROWTH_TYPE
GENUS
FAMILY

ID_TREE (PK)
PLOT_SURVEY (FK)
ID_PLANT_SPECIES (FK)
DIAMETER
HEIGHT

TREE PLANT_SPECIES UNDERSTORY

ID_COVER_CLASS (PK)
CLASS_NUMBER
MINIMUM_PERCENT
MAXIMUM_PERCENT

COVER_CLASS

Figure 2.2: Example of a normalized transactional database structure designed to record
vegetation survey data, showing how information for each subject is recorded only once
in its own table.

While transactional databases are appropriate for the collection, validation and
correction of research data, their complex structure makes data extraction di�cult
(Moody and Kortink, 2000). In the above example, to generate a report shown in
Table 2.1, six of the tables must be queried, which illustrates the trade–o� between
enforcing data integrity and the ease and e�ciency of querying data.

Table 2.1: A typical report generated from the example vegetation database.

Site Date Species Height Diameter Cover
(Min)

Cover
(Max)

Rd_01 2017/06/24 B. nana 6 12 null null
...

...
...

...
...

...
...

Another database architecture, the data warehouse, was designed to facilitates data
queries for online analytical processing, an approach to analyzing business data (Inmon,
1996; Thuraisingham, 1997). Although designed for business managers seeking to make
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decisions based on trends within business data, data warehouses are equally suited for
ecologists seeking to discover patterns within ecological data. Information queried from
a data warehouse can be passed to statistical programs, Geographic Information Systems
and data mining software for further analysis.

This ease of data extraction is achieved by allowing redundancy in the data (Sen and
Sinha, 2005). In the aforementioned vegetation database, the MINIMUM_PERCENT and
MAXIMUM_PERCENT of cover (the threshold of each cover class) could be included in
each record for a species found in a vegetation plot, eliminating the need for the
COVER_CLASS table and thus simplifying queries. But, unlike the redundancy
occurring in a �at �le (such as a spreadsheet), the possibility of errors is avoided by
closely managing the sources of data imported into the data warehouse.

Data warehouses function as read–only sources (Moody and Kortink, 2000) of
unchanging data (Gupta, 1997; El-Sappagh et al., 2011). In business applications this
would be historic sales data, in ecological applications this would be data collected from
�eld observations. The two most common data warehouse designs are the enterprise
data warehouse proposed by Inmon and Kelley (1993) and the collection of smaller
databases, called “data marts”, proposed by Kimball (1996) (Breslin, 2004; Sen and Sinha,
2005). Both were developed to assist business managers to make decisions based on
trends in sales data, but di�er in architecture and implementation. These are commonly
called the Inmon model and the Kimball model.

The Inmon model employs a top–down approach where a single, monolithic data
warehouse is created �rst, from which smaller databases are extracted for the needs of
individual departments. This model requires an advanced level data modelling expertise
and preexisting knowledge of analytical requirements (Breslin, 2004). Because ecologists
often manage their own data and must accommodate unanticipated research directions,
the Inmon model is not suitable and will not be discussed further.

The Kimball model uses an approach which is both bottom–up and top–down, by
creating several data marts, each of which is modelled for a speci�c business process (or
research activity). Conformity is maintained between data marts, allowing them to be
used together. The simplicity of each data mart, and the ability to add new data marts as
di�erent types of data are collected, provides the simplicity and expandability required
by ecological researchers. A description of the Kimball data warehouse model follows.

Data marts are built with the “Dimensional Database Model” architecture comprised of
two types of tables: a Fact Table which stores all quanti�able metrics and Dimension
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Tables which contain qualitative attributes (Kimball et al., 2002; Moody and Kortink,
2000). The granularity of the facts (i.e., the smallest unit in which a record can be
divided) should be small in order to produce a data warehouse adaptable to ad hoc
queries (Kimball et al., 2008). Metrics in the fact table are grouped based on attributes in
the dimension tables.

A typical data mart contains a single fact table joined to several dimension tables. For
example, Figure 2.3 illustrates how data from the transactional vegetation database
(Figure 2.2) could be stored in a data warehouse. Numeric metrics like SLOPE and
HEIGHT are stored in the Fact Table while descriptive categories like SITE_NAME and
GENUS are stored in Dimension Tables. Also shown is the option to store commonly
derived data, such as AVERAGE_PERCENT_COVER which is calculated from the stored
MINIMUM_PERCENT and MAXIMUM_PERCENT values.

ID_VEGETATION (PK)
ID_SITE (FK)
FIELD_STAFF (FK)
SURVEY_DATE
LATITUDE
LONGITUDE
ELEVATION
SLOPE
ASPECT
ID_PLANT_SPECIES (FK)
DIAMETER
HEIGHT
MIN_PERCENT_COVER
MAX_PERCENT_COVER
AVERAGE_PERCENT_COVER

VEGETATION_FACT
FIELD_STAFF_DIMENSION

ID_FIELD_STAFF (PK)
FIRST_NAME
LAST_NAME
EMPLOYEE_TYPE

ID_PLANT_SPECIES (PK)
COMMON_NAME
SCIENTIFIC_NAME
GROWTH_TYPE
GENUS
FAMILY

PLANT_SPECIES_DIMENSION

SITE_DIMENSION
ID_SITE (PK)
SITE_NAME
PROJECT_NAME

Figure 2.3: Example of a data mart designed to record vegetation survey data using the
dimensional model.

The report shown previously in Table 2.1 would only reference two tables when
generated from the data mart compared to the six tables referenced when generated
from the transactional database.

To create a data warehouse for use in the DSS, data from multiple sources must be
imported through a process of Extraction, Transformation and Loading (ETL) (Sen and
Sinha, 2005). Data is �rst extracted from all sources. For an ecologist, this could be data
collected from a number of individual research projects as well as data from other
sources, such as GIS coverages. During the transformation phase data is cleaned
(erroneous and missing data are corrected) and conformed to a speci�ed standard
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(El-Sappagh et al., 2011; Kimball and Caserta, 2004). In the last step, the data is loaded
into a data warehouse speci�cally designed for the data.

Often data are also transformed in ways which are anticipated to make extraction easier.
Calculated or aggregate values can be stored instead of raw measurements if this is the
way the data will be used. For example, water temperature and oxygen concentration
are measured in lakes and streams in order to calculate the dissolved oxygen content. It
is more e�cient to store this calculated value in the data warehouse rather than
calculating it from the raw data each time it is required. Additionally, redundancy can be
added through a process of “de–normalization” (Sen and Sinha, 2005). Whereas
redundancy was purposely avoided when collecting data in a transactional data
warehouse, once the data has been cleaned through ETL, values can be repeated in the
data warehouse. In the vegetation survey example (Figure 2.3) latitude, longitude,
elevation, slope and aspect are repeated for each plant recorded in the fact table.

Both recording context and bioacoustic data can be stored in the data warehouse. In the
latter case, acoustic �les must undergo a transformation so that methods of KDD can be
applied.

Representation of Bioacoustic Files

Techniques employed to identify patterns (e.g. bird songs) from bioacoustic recordings
can be divided into two main categories: 1) those which extract and analyze bioacoustic
features and 2) those which treat a recording as a time–series set of data. Features which
can be extracted from bioacoustic recordings are numerous (Table 2.2) but because most
diagnostic acoustic features di�er between bird species (Fagerlund, 2004), it is di�cult to
know which features should be extracted for a DSS which can support the identi�cation
of all species.
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Table 2.2: A sample of bioacoustic features extracted for species identi�cation from three
di�erent authors: Kirschel et al. (2009), Obrist et al. (2010) and Fagerlund (2004) (Marked
in the table heading as K, O and F respectively).

Bioacoustic Feature K O F
Rate of main part of song X
Rate 1st half of main song X
Rate 2nd half of main song X
Number of notes X
Duration start of 1st to start of 2nd note X
Duration main song X
Rate halves ratio X
Note 2 – middle note peak frequency X
Last note – middle note peak frequency X
Note 2 – note 5 peak frequency X
Last note – 4th last note peak frequency X
Middle note peak frequency X
Main song peak frequency X
Minimum note peak frequency X
Maximum note peak frequency X
Max – min note peak frequency X X X
Note 2 – note 1 peak frequency X
Peak frequency note 1 X
Peak frequency note 2 X
Peak frequency note 3 X
Peak frequency note 4 X
Peak frequency note 5 X
Peak frequency 4th last note X
Peak frequency 3rd last note X
Peak frequency 2nd last note X
Peak frequency last note X
Frequency of peak energy X
Time of peak amplitude X
Duration (of pulse made by bat) X
Spectral Centroid X
Signal Bandwidth X
Spectral Rollo� Frequency X
Delta Spectrum Magnitude X
Spectral Flatness X
Zero–crossing Rate X
Short Time Signal Energy X
Modulation Spectrum X
Cepstral Coe�cients X
Signal Energy Distribution in Time X
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Alternatively, many time series classi�cation techniques are applicable. Bagnall et al.
(2017) tested 18 time series classi�cation techniques for six di�erent scenarios of time
series. Two general approaches applicable to �nding patterns within bird vocalizations
are “phase independent shapelets” and “dictionary based classi�ers.” The �rst approach
classi�es shapelet (a short patterns that de�ne a class) which can occur in any position
within the time series. The second approach classi�es events where frequency of pattern
repetition is diagnostic. Both techniques could be useful when applied to the classes of
bird vocalization to which they are best suited. For example, classi�ers based on phase
independent shapelets may be able to distinguish between House Finches (Capodacus
mexicanus) and Purple Finches (Capodacus purpureus) which both have unstructured
warbling songs but the House Finches includes a diagnostic burry “zreeee” note.
Dictionary based classi�ers may be useful for di�erentiating trilling birds, such as
Dark–eyed Juncos (Junco hyemalis) and Chipping Sparrows (Spizella passerina) which
can be distinguished by the speed each trills (the Dark–eyed Junco being faster).

Searching for similar patterns in large time series data is ine�cient and several methods
of transformation have been developed. One such technique, the Piecewise Aggregate
Approximation (PAA), was introduced by Keogh et al. (2000) and independently by Yi
and Faloutsos (2000). PAA compared favourably to other signal–reduction techniques
such as Singular Value Decomposition, the Discrete Fourier Transform and the Discrete
Wavelets Transform (Keogh et al., 2000) and has the additional advantage of equalizing
signals that di�er only in intensity (i.e. loudness) through signal normalization and
smoothing intra–signal variation caused by extraneous noise (Kasten and McKinley,
2007).

Furthermore, the PAA can be converted to a symbols series which is a lower bounded
approximation of the Euclidean distance of the original time series (Lin et al., 2002)
through the process of Symbolic Aggregate approXimation (SAX) Lin et al. (2003). The
SAX representation can then be analyzed with text and bioinformatics algorithms such
as those tested by Bagnall et al. (2017) for phase independent shapelets and dictionary
based classi�ers. These include: Fast Shapelets (Rakthanmanon and Keogh, 2013),
Shapelet Transform (Bostrom and Bagnall, 2015; Hills et al., 2014), Bag of Patterns (Lin
et al., 2012), Symbolic Aggregate Approximation–Vector Space Model (Senin and
Malinchik, 2013), Dynamic Time Warping with a feature generation scheme (Kate, 2016)
and the Collection of Transformation Ensembles (Bagnall et al., 2015).

The PAA/SAX representation is a time and amplitude reduction of a bioacoustic �le.
Speci�cally, to reduce the size of the time dimension using PAA, a series is �rst divided
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into segments of equal duration and an average value is calculated from each.
Figure 2.4a illustrates a short segment of an acoustic recording of a single Yellow Rail
(Coturnicops noveboracensis (Gmelin, JF, 1789)) “click”. The format of this �le is a
Waveform Audio File Format (abbreviated WAVE or WAV) which represents analogue
sound as amplitude over time.

Two steps are executed to apply PAA:

1. a time series Q is z–normalized to Q′ by the formula (Kasten et al., 2007):

∀iq′ = (qi − µ)

σ
(2.1)

where q is one of the n elements of Q, µ and σ are the mean and standard
deviation of of all values of q, and q′ is an element of Q′.

2. Q′ is divided into equal–sized segments of size w (also known as the PAA size)
where w ≤ n. The mean of the q′ values within each of these sub-sequences is
then computed. Figure 2.4b shows how the same signal is still apparent once
reduced tenfold through PAA.

To reduce the size of the amplitude dimension using SAX, the distribution of all
amplitude values are plotted and divided into bins of equal frequency as seen along the
left side of the graphs in Figure 2.4b and c. The number of bins is speci�ed as the SAX
alphabet size and values between 4 and 8 have been found to be e�ective (Kasten et al.,
2012; Lin et al., 2003). Each amplitude bin is assigned a symbol which is assigned to each
PAA segment occurring within that bin as shown in Figure 2.4c. The resulting PAA/SAX
reduction for the yellow rail “click” is thus: bbbbaaaaaaaaaaaaacaadaacaabbcbcccc. This
pattern of characters is searched and analyzed by data mining algorithms developed for
text.
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Figure 2.4: Conversion of an acoustic �le (.wav format) to a symbolic representation show-
ing how a single yellow rail “click” (a) is �rst reduced to a Piecewise Aggregate Approx-
imation (PAA) (b) and assigned a symbol Symbolic Aggregate approXimation (SAX) (c)
resulting in the sequence bbbbaaaaaaaaaaaaacaadaacaabbcbcccc.
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Representation of Ecological Data

As stated previously, the DSS’s function is to compare patterns of bioacoustic and
ecological context. How ecosystem measures are included within the DSS needs to be
informed by an understanding of the uncertainty inherent in ecological data which
arises from unknown and complex relationships between ecosystem components
(Friederichs, 1958; Beeby and Brennan, 2007) and from challenges in characterizing
elements of an ecosystem (Marchini et al., 2009; Regan et al., 2012). If ignored, these
uncertainties can lead to a falsely accurate representation of nature. Instead researchers
should be aware of the sources of uncertainty so they can employ compensating
strategies when collecting, storing and interpreting data. Knowing these limitations is
crucial to meaningfully representing ecosystems in data repositories.

The causes of imprecision identi�ed by Marchini et al. (2009) and Regan et al. (2012) can
be considered within the framework of �ve Uncertainty Classes (UC) encountered in the
stages of an ecological study (Figure 2.5) (Pouw and Kwiatkowska, 2013). These are the
complexity of natural systems (UC I), the di�culty in characterizing components (UC II),
the necessary assumptions required to formulate explanations (UC III), the
simpli�cations required to represent the discovered relationships in a model (UC IV) and
the challenges inherent in communication of ideas (UC V). At each of these steps,
measures can be made to accommodate the expected uncertainty.



18

Nature

Identify
Components

Formulate
Explanations

Represent in a 
Model

Communicate Ideas

Ex
is

ts
C

om
pr

eh
en

si
on

I

II

III

IV

V

R
es

ea
rc

h

UC

 

Source of Uncertainty

Marchini (2009) Regan et al. (2012)

Ecosystem variability Natural variation
Inherent randomness

Imprecise data Measurement error
Systematic error
Numerical vagueness

Complex interactions
Expert Knowledge 
 

Subjective judgment

Qualitative aspects Model uncertainty

expressed linguistically

Nonnumerical vagueness
Context dependence 
Ambiguity
Indeterminacy in theoretical terms
Underspecificity

Figure 2.5: A Framework of Uncertainty within ecological studies. Arrows indicate knowl-
edge �ow. Roman numerals indicate the Uncertainty Classes (UC) discussed in the text.

As with any ecological study, collecting recording context data begins with the selection
of relevant natural components (UCI) followed by a decision of how best to characterize
these components (UCII). Once these decisions are made, an appraisal of how
uncertainty arises and how it is dealt with must be made. For example, when the height
of a tree is measured a researcher needs to understand both the limitations of the
measuring technique (e.g. measurement error and numerical vagueness, from Figure 2.5)
as well as the meaning of tree height as an ecosystem component. These two
considerations pose related problems.

In the �rst case, it is di�cult and tedious to measure tree height, so the value is often
estimated relative to a tree that was measured by trigonometry. But, most data
management systems assume that recorded values are “crisp” so an estimated height of
10 m is recorded as precisely 10 m.

In the second case, what does the height value mean as a attribute of the ecosystem? Is
this tree “tall” or “short”? Meaning can be assigned by classi�cation in a system which
assumed that all members of a class have share a similar ecological function. For
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example, trees can be grouped into ordinal height class as described in the B.C. Forest
Inventory Statistics (Table 2.3) (British Columbia Ministry of Forests, 1995).

Table 2.3: Tree height classes used by for B.C. Forest Inventory Statistics in the Cariboo
Forest Region (British Columbia Ministry of Forests, 1995).

Height Class Height Range (meters)

1 0 – 10.4

2 10.5 – 19.4

3 19.5 – 28.4

4 28.5 – 37.4

5 37.5 – 46.4

6 46.5 – 55.4

7 55.5 – 64.4

8 64.5+

But there are two problems which arise from using uncertain values with
crisply–de�ned, mutually exclusive categories. Firstly, it is assumed that the component
has been measured accurately and secondly, that the small change in value near a class
boundary re�ects a real di�erence in the natural world. A tree approximately 10 m tall
can be assigned to Class 1 or Class 2, either due to a small real di�erence in height (here
10 cm) or on the semi–arbitrary way its height was estimated. This characteristic of the
classi�cation system can be visualized in Figure 2.6a which shows that a tree is included
completely within a category regardless of how close its height is the threshold of an
adjacent category.

To accommodate imprecise data, “soft computing” techniques have been devised, such
as fuzzy logic and probabilistic reasoning. Fuzzy logic was developed to represent
entities which cannot be de�nitively categorized within a single Boolean set but can
more meaningfully be considered a member of multiple sets to di�erent degrees (Zadeh,
1965). A Fuzzy Inference System (FIS) is the practical application of the theory of fuzzy
logic, composed of fuzzy membership functions and fuzzy rules (Gutiérrez-Estrada et al.,
2013). Each of these components will be described using examples. The degree of
membership in multiple sets will be illustrated with B.C. Forest Inventory tree heights,
expression of expert knowledge using fuzzy rules will be illustrated with an assessment
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how wind–like a bioacoustic recording is, and lastly a method of de�ning fuzzy sets
from a set of data will be shown using river �ow data.

Entities can be members of multiple categories because fuzzy membership functions are
overlapping. Fuzzy memberships for the B.C. Forest Inventory categories could be
de�ned as in Figure 2.6b which shows that a tree near the height threshold of two
categories, has memberships in both categories.
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Figure 2.6: Boolean and fuzzy membership sets for the eight B.C. Forest Inventory Statis-
tics Tree Height Classes. The bold vertical line indicates a tree with a height of 12 m which
is included entirely within class 2 under the Boolean system and has memberships of 0.3
in class 1 and 0.7 in class 2 using the fuzzy system.

While using fuzzy sets alone can be e�ective to add nuanced meaning to the
representation of ecosystem components, these values can be combined with expert



21

knowledge to interpret the signi�cance of the data. Expert knowledge takes the form of
statements using the IF, AND and OR logical operators to compile what are called Fuzzy
Rules.

An example is presented of a Fuzzy Inference System for the assessment of how
wind–like an acoustic event is. The fuzzy rules created are based on the work by
(Towsey and Planitz, 2011) who showed that intensity and entropy features of a
recording can be used to separate acoustic events caused by organisms (biophonic) from
sounds caused by other natural processes (geophonic). The FIS requires eight acoustic
features:

1. The maximum intensity value for any frequency below 500 Hz: max (I<500 Hz)

2. The minimum intensity value for any frequency above the maximum identi�ed in
step 1: min (I>500 Hz)

3. The frequency of the maximum mean intensity: fmax(I)

4. The frequency of the minimum mean intensity: fmin(I)

5. The minimum entropy value for any frequency located below 500 Hz:
min (S<500 Hz)

6. The maximum entropy value for any above the location of the minimum identi�ed
in step 5: max (S>500 Hz)

7. The frequency or maximum entropy: fmax(S)

8. The frequency of the minimum entropy: fmin(S)

Table 2.4 shows the acoustic features which are greater for wind than for biophonic
events. To create a partial FIS to determine how wind–like an acoustic event is based on
the �rst two parameters of Table 2.4, fuzzy membership functions are created for the
di�erences in frequency and intensity, each with two overlapping sets for a “small” and
a “large” di�erence. An output set of fuzzy memberships is created for “wind–like” with
sets for “not”, “somewhat” and “very” wind–like (the Input Membership Functions in
Figure 2.7).

Next, each of the acoustic features listed in Table 2.4 is expressed in an FIS as a fuzzy
rule. The four possible fuzzy rules for the �rst two acoustic parameters, called here the
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“intensity di�erence” and “frequency di�erence” are shown in Table 2.5. The possible
conditions allowed for each input parameter are “small” and “large”. The predictions of
the FIS are that the sound is “not,” “somewhat” or “very” wind–like. For the purpose of
this example we assume that if both features are “small” then the sound is “not”
wind-like, if both features are “large” the sound is “very” wind–like and if the magnitude
of one acoustic features are “small” and the other “large” the sound is “somewhat”
wind–like.

Table 2.4: Acoustic features for the identi�cation of acoustic events caused by wind where
I is intensity , f is frequency and S is entropy of an acoustic signal. From Towsey et al.
(2012).

Parameter No. De�nition of Feature Magnitude for Wind
vs. Non–Wind

events

1 max (I<500 Hz)−min (I>500 Hz) greater

2 fmax(I) − fmin(I) greater

3 min (S<500 Hz)−max (S>500 Hz) greater

4 fmax(S) − fmin(S) greater

Table 2.5: Fuzzy rules for the detection of wind using parameters no. 1 and 2 of the four
parameters identi�ed by Towsey et al. (2012).

Rule No. IF intensity
di�erence is...

(Logical
Operator)

IF frequency
di�erence is...

THEN the
sound is

wind–like...

1 small AND small not

2 small AND large somewhat

3 large AND small somewhat

4 large AND large very
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Figure 2.7: A fuzzy inference system to categorize acoustic signals as wind–sound. Two
parameters of the four used by Towsey et al. (2012) are shown. An example is shown with
input values: frequency di�erence = 4.691 kHz, intensity di�erence = 26.2 dB. Output:
wind–like = 39.4% .
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For each rule, the degree to which each corresponding input membership functions
represents the output case is evaluated. Rows 2 to 5 of Figure 2.7 illustrates each rule of
the FIS being applied. For example, rule 1 shows how the degree to which the frequency
di�erence and intensity di�erence are “small”. The AND operator selects the lowest
degree of membership of the two and applies this as the membership of the “not”
wind–like function (shaded area). When all output memberships are determined a single
output value for the FIS is derived by calculating the geometric centre of the polygon
created by all overlapping output memberships (Output of FIS in Figure 2.7). In this
example, a frequency di�erence of 4.691 kHz and an intensity di�erence of 26.2 dB is
found to be 39.4% wind–like.

A full FIS using all four parameters from Table 2.4 would increase the number of rules to
16 (24 for four rules each with two membership functions) and would require �ve fuzzy
sets in the output based on the possible combination of large and small memberships.

The number, shape and boundaries of fuzzy membership sets are not de�ned by the
theory but are selected by the practitioner. Two or more sets can be de�ned, they can be
triangular, trapezoidal or Gaussian and can be de�ned for any range within the universe
of domain values. Where expert knowledge exists, membership functions can be created
to re�ect this. Another option is to be guided by the distribution of measured values.

Using the technique described by Suh (2012), membership functions can be created from
the data to be classi�ed if the distribution is close to a normal distribution. An example
of this technique is shown using water �ow, a common ecological measure when
studying rivers. Figure 2.8a shows a histogram of �ow measurements for an example
data set (Durbin and Koopman, 2012). The distribution is approximately normal as can
be seen from a Q–Q plot (Figure 2.8b).
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Figure 2.8: Distribution of water �ow data used to derive fuzzy membership sets. The
Q–Q plot shows that the distribution is approximately normal.

The mean, minimum, maximum and standard deviation (f̄ , fmin, fmax and σ) are
calculated and are then used to calculate the mean of two subsets of values greater–than
and less–than one standard deviation away from the mean (f̄low and f̄high) using
Equation 2.2 and Equation 2.3 (Table 2.6).

f̄low =
1

n

n∑
i=1

{
f : f < f̄ − σ

}
(2.2)

f̄high =
1

n

n∑
i=1

{
f : f > f̄ + σ

}
(2.3)
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Table 2.6: Values used to de�ne fuzzy sets based on the characterization of �ow measure-
ments.

Value Flow (×108m3) Description

f̄min 456 Minimum �ow value

f̄low 699 Mean of value less than one standard
deviation below the mean

f̄ − σ 750 One standard deviation below the mean

f̄ 919 Mean �ow value for all data

f̄ + σ 1,089 One standard deviation above the mean

f̄high 1,174 Mean of values one standard deviation
above the mean

f̄max 1,370 Maximum �ow value

The �ve values of fare then used to de�ne the horizontal coordinates of two trapezoidal
and one triangular membership functions while the vertical coordinates are given a
value of either zero or one (Figure 2.9).

Calculating the membership of a �ow value in each of the three fuzzy sets can be done
graphically, as was shown in Figure 2.9, or using Formulas Equation 2.4, Equation 2.5
and Equation 2.6.
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Figure 2.9: Derivation of membership functions from normalized distribution.
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µlow(f) =


1 if fmin ≤ f ≤ f̄low
f̄−f

f̄−f̄low
if f̄low ≤ f < f̄

0 if f > f̄

(2.4)

µmedium(f) =



0 if f < f̄low
f−f̄low
f̄−f̄low

if f̄low ≤ f ≤ f̄

f̄high−f
f̄high−f̄

if f̄ < f < f̄high

0 if f ≥ f̄high

(2.5)

µhigh(f) =


0 if fmin ≤ f ≤ f̄

f−f̄
f̄high−f̄

if f̄ ≤ f < f̄high

1 if f ≥ fhigh

(2.6)

Discussion

The advantages of data warehouses have not been realized by many ecologists who
typically store their data in spreadsheets or transactional databases. Often their data is
housed in a number of separate �les, each one created speci�cally for individual
research projects, making it di�cult to consider the data as a whole. By integrating
these data sources within a single data warehouse, ecologists have the opportunity to
search through all their data to discover “valid, novel, potentially useful and ultimately
understandable patterns in data” through Knowledge Discovery in Databases (Fayyad,
1997). A speci�c application of a data warehouse has been presented here; as a
component of a Decision Support System to aid human listeners to process bioacoustic
recordings. Any ecologist can bene�t from compiling their data to into a data warehouse
to discover relationships which can inspire future research. However, the process of
moving to a data warehouse may pose challenges to an ecologist.
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Ecological data is arguably more diverse than the �nancial transactions which data
warehouses were originally designed for. Ecosystems are complex and often not fully
understood, ecological parameters can be di�cult to de�ne and logistically challenging
to measure. Consequently, representing ecological data in any data management system
requires careful evaluation of the sources of uncertainty and consideration of methods
which could best represent the ecosystem component. Fuzzy logic is one example of a
soft-computing technique that has been applied to represent instances of uncertainty
but is not yet commonly used in this �eld.

Ecologists have seen a dramatic expansion in the volume of data they must manage from
the increased use of computer–based data loggers which has necessitated the need for
automated or semi–automated data processing. For example, Autonomous Recording
Units have drastically increased the amount of bioacoustic data which must be analyzed.
Data warehouses are well suited to store this volume of data but it should be stored in a
form which data mining algorithms can process. One simple method is to treat the
recording as a time series and to use aggregation techniques to reduce the signal to a
sequence of symbols through PAA/SAX. The resulting format is well suited to many
data mining routines.

Even with the challenges inherent in ecological data, researchers with multiple data sets
can bene�t from developing a data warehouse because it can extend the use of their
data. In the next chapter the process of creating a data warehouse from existing
bioacoustic data will be described.
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Chapter 3

Pre-processing and Organization of Ecological
Data to Facilitate Knowledge Discovery

Collecting ecological data can be di�cult because of logistics, di�culty in measuring
ecological components and human error introduced by �eld technicians. The ability to
get to sites can be challenging, especially to remote locations and habitats that are
di�cult to access or traverse. Once at a site, measuring habitat components can be
unrealistic where conditions are unsafe, components are di�cult to measure or because
real–world conditions do not match prede�ned categories. Additionally, �eld
measurements are often done by students who frequently are required to make
estimates based on judgment despite their inexperience in the applicable protocol.
Consequently, ecological data can be incomplete, contain errors and imperfectly
represent the habitat they were meant to quantify.

In contrast, business data can seem simple to gather and manage. Business transactions
are often logged in real–time, are de�nitive and don’t rely on human judgment so the
application of techniques designed for business data, such as data warehouses, to
relatively “messy” ecological data can pose unique challenges. In this chapter a data
warehouse is created for an existing ecological data set of bioacoustic research. The
steps chosen to prepare the data and design the data warehouse as a component of the
proposed DSS are outlined in the Methods section. The Results section relates the
speci�c problems encountered with the data as the steps in the Method were applied.
Recommendations are made in the Discussion for moving ecological data into a data
warehouse based on the experience gained in this research.
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Methods

To systematically create a data warehouse for bioacoustic data, the steps of Knowledge
Discovery in Databases procedure (KDD) (Azevedo and Santos, 2008) were followed.
Table 3.1 outlines the steps of this procedure. KDD step 1 involves the collection of the
�eld and reference data required. KDD step 2 is a necessary step to move “clean” data
from the Input to the Codifying and Organization steps of the DSS, described in Chapter
2. Techniques employed in KDD step 3 simplify data management and add knowledge to
the data. This is accomplished through averaging values, collapsing hierarchical data
structure and applying specialized techniques such as fuzzy logic where appropriate.

These �rst three steps were executed prior to the development of the data warehouse
and will be described in the remainder of this chapter. The applications of the remaining
four steps describe the Pattern Matching, Reports and User Input sections of the
proposed DSS (Figure 2.1) and represent the next–steps in the DSS.-

Table 3.1: Steps of the Knowledge Discovery in Databases (KDD) procedure.

Steps

1. Selection of relevant data though an understanding of data and the goals of the KDD

2. Processing of data to handle missing or erroneous values

3. Reducing the dimensionality (number of attributes) in the data by aggregation

4. Selecting data mining techniques (clustering, summation, modelling, classi�cation
and change detection)

5. Searching for novel and non-trivial patterns

6. Interpreting discovered patterns

7. Incorporating the knowledge in a models

Knowledge Discovery in Databases Step 1 - Selection of Relevant Data

The data used in this thesis were made available by Dr. Erin Bayne of the University of
Alberta, who maintains the Ecological Monitoring Committee of the Lower Athabasca
region (EMCLA) database. The database was comprised of data and metadata pertaining
to the deployment of ARUs, the creation of bioacoustic recordings and the identi�cation
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of species from those recordings. Data were collected for a number of projects focused
either on studying individual species of interest or to compare the biodiversity of
ecosystems. The spatial extent of the data base covered Alberta and included parts of
British Columbia and the Northwest Territories. To reduce the size of the data set for
testing, only ARU deployments within the Lower Athabasca region were selected
(Figure 3.1).

ARUs were usually used in groupings to study an e�ect such as a man-made
disturbance. For example, Figure 3.2 illustrates how ARUs could be used to study the
e�ects of roads on bird populations. One ARU is deployed near the road where road
e�ects would be strongest, two more ARUs are placed at increasing distances from the
road where the road e�ects would be weaker. These three ARUs would be considered
the experimental treatment group. Additional sets of ARUs would be deployed far
enough away from roads to function as experimental controls.

An explanation of the nomenclature used in the bioacoustic data and a description of
each component of the EMCLA data follows:

The location where each ARU is installed is known as a Site and each group of ARUs is
called a Station. All treatment and control Stations are combined to make a Project.

Each ARU would be set to capture an acoustic Recording at a preset interval for a preset
duration. From Acoustic Events on these recordings, a bird species would be identi�ed
and recorded as a Detection.

Because an ARU may be deployed at a Site repeatedly within a year or over subsequent
years, each occurrence of an ARU installation was called a Deployment.
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(a) (b)

Figure 3.1: (a) The Lower Athabasca region of Alberta (shaded) within the province of
Alberta, showing locations of ARU deployments (dots).
(b) Lower Athabasca region of Alberta showing locations of ARU deployments (dots).

Station-01 Station-02
Station-03

Site-R12

Figure 3.2: An example of three ARUs used to study the e�ects of roads on bird distri-
bution. The location where each ARU is placed is called a Station, the group of ARUs is
called a Site. Several Sites would be sampled as part of a Project. The ARUs are placed so
that Stations 01 and 02 measure e�ects close and far from the road while Station 03 is the
control, placed outside the road e�ects.

The data extracted from the EMCLA database represent the application of KDD step 1,
the selection of relevant data. They provided the bioacoustic, temporal–context and
spatial–context data for the Decision Support System (Figure 2.1).
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Speci�cally, acoustic �le names and species identi�ed from these recordings represent
bioacoustic information. The bioacoustic recordings themselves were not stored in the
EMCLA database but were downloaded from a networked repository maintained by Dr.
Bayne. These ten-minute stereo recordings were converted from the proprietary “WAC”
(.wac) compressed format to a wave (.wav) format using Wildlife Acoustics’s wac2wav
conversion software. Files had been recorded at a bitrate of 44,100 kHz. A list of species
names and codes used by the listeners was also downloaded. This list included the
taxonomic levels from order to species, common names in English and the standard
4-letter code used by the American Ornithological Union (North American Classi�cation
Committee, 2014) as well as true/false �elds for the species occurrence in Alberta and its
vocalizations characteristics as determined by University of Alberta sta�.

The temporal components of recording context were available from the recording
metadata. Time-of-season and time-of-day data were provided by the date and time
when a recording was made. Additionally, the period between the ARU deployment and
retrieval date was also available for time-of-season knowledge. Time was recorded in
civil time which in Alberta is Mountain Standard or Mountain Daylight time.

The spatial components of recording context was provided by the geographic
coordinates for all ARU deployments. For a subset of deployments, additional spatial
information was available in the form of �eld assessments of water depth, wetland type
and horizontal cover. Water depth measurements were made at and around an ARU
deployment site at 21 points, 10 metersapart in the cardinal directions (Figure 3.3a).
Wetland type was judged according to the Ducks Unlimited Enhanced Wetland
Classi�cation (DUEWC)(Ducks Unlimited, 2015) system (Table 3.2). Observed wetland
classes were recorded in two circular regions, within 50 meters around the ARU
deployment and between 50 m and 150 m from the ARU deployment (Figure 3.3b).
Horizontal cover was estimated using a 1 m× 2 mcover board, divided into two equal
squares (Figure 3.4). From a distance of 50 m the percentage of each square obscured by
intervening vegetation was estimated. This process was repeated at �ve points at and
around the ARU deployment (Figure 3.3a).
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Figure 3.3: Habitat assessment at ARU deployment locations.

1m

1m

1m

Figure 3.4: Sketch of a horizontal cover board in use. An estimate is made of how much
each of the top and bottom squares are obscured by vegetation. In this example the top
square is approximately 10% obscured and the bottom square it approximately 30% ob-
scured.
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Table 3.2: Standard Ducks Unlimited Enhanced Wetland Classi�cation (DUEWC) codes
provided to �eld technicians.

DUEWC Description DUEWC Code
Conifer Upland UCN
Deciduous Upland UDC
Mixedwood Upland UMX
Other Upland UOT
Treed Bog BTR
Shrubby Bog BSH
Open Bog BOP
Treed Poor Fen FPT
Shrubby Poor Fen FPS
Graminoid Poor Fen FPG
Treed Rich Fen FRT
Shrubby Rich Fen FRS
Graminoid Rich Fen FRG
Shallow/Open Water WAT
Emergent Marsh MEM
Meadow Marsh MMD
Shrub Swamp SSH
Hardwood Swamp SHR
Mixedwood Swamp SMX
Tamarack Swamp STM
Conifer Swamp SCN

ARU deployment data were downloaded for this research on 2016/07/27. EMCLA data
were extracted by queries to the University of Alberta’s SQLServer database via a MS
Access database. Table 3.3 shows the type and number of records retrieved. Records
were downloaded corresponding to 7,933 ARU deployments from which 18,741
recordings were made and 122,743 species identi�cations determined. A list of 435
candidate species was also downloaded. In-�eld habitat assessments were available for
some ARU deployment records: water depth (736), wetland type (534) and horizontal
cover (449). To ensure that only data which had been validated by U of A sta� was
considered, only the 3,533 records for deployments prior to 2014 were considered. The
results of these queries were stored as comma-delimited text �les which were then
uploaded to tables in an Oracle database into “raw” data tables.
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Table 3.3: Records extracted from the EMCLA database for use in the Decision Support
System. The number of records listed are from before the data were subset by time or
location.

Theme Information Type Use in the DSS Number
of

Records

Species Codes Order
Family
Genus
Species
English Name
4-Letter Code
In Alberta (Y/N)
Call Type

Bioacoustic 435

Species
Identi�ed

File Name
Species Code

Bioacoustic 122,743

Recordings Made Deployment Information
File Name
Date & Time of recording
Start

Bioacoustic
Temporal-Context

18,741

ARU
Deployment

Project Identi�cation
Geographic Location
Installation Date
Retrieval Date

Temporal-Context
Spatial-Context

7,933

Water Depth Deployment Information
Plot Location
Depth Measurements

Spatial-Context 18,787

DUEWC Wetland Deployment Information
Bu�er Distance
Habitat Class
Percent Area Estimate

Spatial-Context 2,052

Horizontal Cover Deployment Information
Plot
Height
Percent Obscured

Spatial-Context 5,067
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Secondarily Derived Information

Because �eld assessments were only made for a proportion of ARU deployments,
additional spatial-context attributes were derived through integration of the EMCLA
data with CanVec+ habitat maps (Natural Resources Canada, 2014) and the Alberta
Digital Elevation Model (DEM) (Ministry of Natrural Resources, 1997) using GRASS GIS
(GRASS Development Team, 2015).

ARU deployment coordinates from the EMCLA data set were loaded into the GIS and
those within the Lower Athabasca region (1,819 deployments) were extracted. The
results were then exported to a temporary table in the Oracle database and used to
identify deployment records within the region of interest.

The GIS was also used to create circular bu�ers around each deployment site. A radius
of 150 meters was chosen to match the DUEWC habitat assessments. These bu�ers were
used to overlay the CanVec+ Wooded Area entity in the Vegetation theme (Table 3.4), the
Wetland entity in the Saturated Soil theme and the Water Body entities in the Hydrology
theme. The GIS reported the area (m2) of each habitat, these values were imported into
the ORACLE database as a proportion of the total bu�er area. Because layers of the
CanVec+ coverages overlap, total habitat proportions could add up to more that one.

Using the r.terra�ow tool and the Alberta DEM in the GRASS GIS, a water accumulation
map was created (Figure 3.5). The area (in m2) of terrain draining into each deployment
site was then extracted from the GIS to the Oracle database.

An additional temporal-context attribute was derived by calculating time-before and
time-after local sunrise as well as time-before and time-after local sunset using the
maptools package (Bivand and Lewin-Koh, 2016) for the R statistical program (R Core
Team, 2017) with the recording-time and deployment coordinates from the EMCLA
database as parameters. This data was also imported into the Oracle database.

Table 3.5 summarizes all secondary information derived for inclusion into the Oracle
database for the Field Data section of the DSS.
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Table 3.4: Canvec+ Wooded Area entity attributes.

Codes Code Label
0 No Data
10 Unclassi�ed
11 Cloud
12 Shadow
50 Shrubland
51 Shrub Tall
52 Shrub Low
81 Wetland Treed
200 Forest/Tree classes
210 Coniferous Forest
211 Coniferous Dense
212 Coniferous Open
213 Coniferous Sparse
220 Deciduous Forest
221 Broadleaf Dense
222 Broadleaf Open
223 Broadleaf Sparse
230 Mixed Forest
231 Mixewood Dense
232 Mixewood Open
233 Mixewood Sparse

Elevation (m)

900
800
700
600
500
400
300
200

(a)

10,000,000

10,000

1,000

10

Water
Accumulation (m2)

(b)

Figure 3.5: Topography and Hydrology of the Lower Athabasca Region, (a) Digital Eleva-
tion map (b) Water accumulation.
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Table 3.5: Secondary information derived from other data sources and data
transformations.

From EMCLA Database From External
Sources

Derived Data

Deployment Coordinates CanVec+a themes:
Wooded Area
Saturated Soil
Hydrology

Terrestrial Habitat
Wetland
Wooded Area

Deployment Coordinates Water
Accumulation Map
(created from the
Alberta Digital
Elevation Modelb)

Water
Accumulation

Deployment Coordinates,
Recording Time

— time before sunrise
time after sunrise
time before sunset
time after sunset

a Natural Resources Canada (2014)
b Ministry of Natrural Resources (1997)

Knowledge Discovery in Databases Step 2 - Processing of Data to Handle
Missing or Erroneous Values

The second step of the KDD procedure is to process data for missing and erroneous
values. This step is critical to obtain valid results from data queries. Records of
deployments, recordings and species detections were omitted from the study if data
necessary to specify date, time or identity were missing. Erroneous data were identi�ed
by comparison with the domain of expected values based on the research protocols
under which the data were collected (Table 3.6).

Additional �elds were added to the raw data tables in the Oracle database. These �elds
were called IS_VALID, IN_TIMEFRAME and IN_REGION . These �elds were set to 0 for
all records. After analysis, valid records were assigning a values of 1. The methods used
to identify and mark missing and erroneous data were speci�c to the type of data
considered. The next sections describe these methods.



40

Ta
bl

e
3.

6:
Va

lid
Ra

ng
es

of
D

at
a

fo
rK

D
D

st
ep

2.

D
at
a

U
ni
ts

D
om

ai
n

Ex
pe

ct
ed

N
um

be
r
of

V
al
ue

s
D

ep
lo

ym
en

t/
Re

tr
ie

va
l

D
at

e
an

d
Ti

m
e

(t
d
,t
r
t)

ye
ar

/m
on

th
/d

ay
/

ho
ur

:m
in

ut
e:

se
co

nd
t d
,t
r
t
∈

[2
00

0/
01
/0

1,
20

14
/1

2/
31

]
t d
<
t r
t

1
de

pl
oy

m
en

td
at

a
an

d
1

re
tr

ie
va

ld
at

e
pe

rd
ep

lo
ym

en
t

Re
co

rd
in

g
D

at
e

an
d

Ti
m

e
(t
r
c
)

ye
ar

/m
on

th
/d

ay
/

ho
ur

:m
in

ut
e:

se
co

nd
t r
c
∈

[2
00

0/
01
/0

1,
20

14
/1

2/
31

]
t d
<
t r
c
<
t r
t

1
pe

rr
ec

or
di

ng

Lo
ca

tio
n

(l
)

la
tit

ud
e

&
lo

ng
itu

de
l l
a
ti
tu
d
e
∈

[−
90
◦ ,

90
◦ ]

l l
o
n
g
it
u
d
e
∈

[−
18

0◦
,1

80
◦ ]

l
⊆
{L
ow
er
A
th
a
ba
sc
a
R
eg
io
n
}

1
se

to
fc

oo
rd

in
at

es
pe

rA
RU

de
pl

oy
m

en
t

Sp
ec

ie
s

no
ne

Co
de

su
se

d
by

th
e

U
ni

ve
rs

ity
of

A
lb

er
ta

1
sp

ec
ie

sp
er

de
te

ct
io

n
re

co
rd

W
at

er
D

ep
th

(d
)

cm
d
∈

[0
,1

00
]

fo
ra

gg
re

ga
tio

n
d
∈

(0
,1

00
]

fo
rd

is
tr

ib
ut

io
n

21
pe

rA
RU

de
pl

oy
m

en
t

W
et

la
nd

A
ss

es
sm

en
t

(D
U
E
W
C

)
n/

a
D

U
EW

C
ca

te
go

rie
s

1
(in

ne
rb

u�
er

),
1

(o
ut

er
bu

�e
r)

pe
rA

RU
de

pl
oy

m
en

t

H
or

iz
on

ta
lC

ov
er

(c
)

pe
rc

en
t

c
∈

[0
,1

00
]

5
hi

gh
&

5
lo

w
pe

rA
RU

de
pl

oy
m

en
t

Fl
ow

A
cc

um
ul

at
io

n
(f

)
m

2
f
≥

0
1

pe
rA

RU
de

pl
oy

m
en

t

H
ab

ita
tT

yp
e

(C
an

Ve
c+

ca
te

go
rie

s)
(h

)
no

ne
(p

ro
po

rt
io

n)
h
∈

[0
,1

]
1

or
m

or
e

pe
rA

RU
de

pl
oy

m
en

t

Su
n-

tim
e(
t s

)
m

in
ut

es
t s
∈

[−
14

40
,1

44
0]

1
su

ns
et

&
1

su
nr

is
e

tim
e

pe
r

re
co

rd
in

g



41

Dates

First, a range of dates was selected to omit records which had not yet been validated by
University of Alberta technicians. These records were marked with a 1 value in the
IN_TIMEFRAME �eld.

Within this subset of data, dates which were either erroneous or suspicious were sought
through database queries according to the following classes:

Class 1 Missing Values (null) Deployment date or Retrieve date is NULL.

Class 2 Out-of-Range Deployment date or Retrieve date outside a reasonable
threshold

Class 3 Out-of-sequence Retrieval dates proceed Deployment dates.

Class 4 Range Greater than Likely Retrieval date follows deployment date by an
unlikely length of time.

Records which were identi�ed as Class 1, Class 3 were excluded in all cases. Records
identi�ed in classes 2 and 4 were manually evaluated.

Locations

Records were selected where latitude and longitude coordinates for ARU deployment
were present. These deployment records were then imported into the GIS where those
which lay within the Lower Athabasca region were selected. This subset was then
exported back to the Oracle database and was used to set the �eld IN_REGION �eld to 1.
In this way both deployments outside of the study region and any with invalid or
missing coordinates were omitted.

Species

For records where species detections had been made, the four-letter species code
recorded were matched to the list of codes downloaded from the EMCLA database.
These codes included the American Ornithologists’ Union (AOU) species codes for birds
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(North American Classi�cation Committee, 2014) as well as codes for amphibians and
mammals. Where recorded species codes did not match reference codes, an
interpretation of the incorrect code was made based on the researcher’s birding
experience. All species codes that matched were set to IS_VALID = 1.

Water Depth

At deployment sites where water depth had been measured (with a meter stick), values
between 0 cm to 100 cm were considered valid and were used in subsequent aggregation
methods. For deployments where some depth values were missing or invalid,
calculations were made with the remaining values.

Wetland Assessment

Habitat assessments were compared to the valid DUEWC codes (Table 3.2). Codes which
were invalid were matched to appropriate DUEWC classes where possible. In other
cases, all valid information about the wetland classi�cation was retained. If no match
could be made with standard categories, no wetland habitat information was applied to
that record.

Horizontal Cover

Horizontal coverage estimates could range from completely un-obscured (0%) to
completely obscured (100%). Values outside of this range were excluded from
subsequent aggregation calculations. On sites where some values were missing or
invalid, the remaining values were used to calculate aggregate values.

Knowledge Discovery in Databases Step 3 - Reducing Dimensionality

Reducing dimensionality of data (KDD Step 3) simpli�es data management and adds
knowledge to the data. Dimension reduction was applied to acoustic recordings, water
depth, horizontal cover and wetland classi�cation using methods of aggregation
appropriate for each data type (Table 3.7).
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Table 3.7: Aggregation of habitat data.

From EMCLA Database Transformation / Aggregation

Acoustic Recordings PAA/SAX

Water Depth Averages & Fuzzy Memberships

Horizontal Cover Averages

DUEWC Habitat Proportion

Acoustic Recordings

Acoustic recordings were reduced through Piecewise Aggregate Approximation (Keogh
et al., 2000) followed by Symbolic Aggregate approXimation (SAX) (Lin et al., 2003)
using the sax_by_chunking method in the jmotif package (Senin, 2016) for the R
statistical program. The parameters used were an alphabet size of 8 and a PAA size (w)

calculated to reduce the acoustic �le by a factor of 10 (Equation 3.1).

w = round(length(recording)/10) (3.1)

The minute-long symbolic representations were imported into a temporary table in the
database and concatenated to represent the original ten-minute recording before being
stored as a Character Large Object (CLOB).

Water Depth

The 21 water depth measurements for each ARU station were summarized both as a
simple mean and as a membership in three fuzzy sets (shallow, medium and deep).
Triangular fuzzy sets were derived from the normalized distribution of depth values
following the method outlined by Suh (2012). Because all plots without water depth
were given a value of 0 cm (i.e. the distance above the water table was not measured)
only the distribution of values greater than 0 cm (referred to “wet plots”) were used for
fuzzy set derivation, as described in the section.
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Horizontal Cover

The �ve sets of low and high horizontal cover for each ARU station were aggregated as a
mean for each height class as well as a combined mean.

Habitat Index

The two DUEWC habitat index values recorded at ARU stations were aggregated to a
single value. However, since the individual estimates re�ected the proximity of habitat
to the site, they were retained in the database.

Implementing the Dimensional Design Process

Between KDD step 3 (Reducing Dimensinoality) and KDD step 4 (Selecting a Data
Mining Techniques), it is bene�cial to arrange the data in a structure optimized to
extract data for data mining techniques. By following the steps of the Dimension Design
Process (DDP) (Kimball et al., 2002) (Table 3.8), a collection of data marts was created to
support such ad hoc queries.

Recall that within a data mart, quantitative attributes are stored in a single fact table
while qualitative attributes (used for �ltering and grouping) are stored in related
dimension tables (See Chapter 1). The collection of data marts comprise a data
warehouse.

Table 3.8: Steps of the Dimension Design Process (DDP).

Steps

1. Select the research focus

2. Declare the grain

3. Identify the dimensions

4. Identify the facts

The development of the bioacoustic Decision Support System was adopted as the focus
of the data mart design process (DDP step-1). The number of data marts and the
granularity of each was chosen to re�ect the major research activities (DDP step 2). Data
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related to the dimension and fact tables for each was identi�ed, appropriate tables were
built in the Oracle database and data was copied from the raw data tables into these new
tables (DDP step 3 and 4). The following sections detail how these steps were performed.

Declaration of Grain

The chronological processes of installing ARUs, the acquisition of acoustic recordings
and the identi�cation of species from these recordings (together with their respective
granularity of deployment, recording and detection) were adopted as research activities
for which individual data marts were made (Table 3.9).

Table 3.9: Major activities of bioacoustic research, granularity of data and the designated
data mart.

Research Activity Description Granularity Data Mart

Installation of ARUs details of where and
when ARUs were
placed

Deployment Deployment Mart

Creation of Acoustic
Recordings

details pertaining to
the acquisition of
bioacoustic recordings
from deployed ARUs

Recording Recording Mart

Identi�cation of
Species

determination of
animal type based on a
recorded acoustic
event

Detection Detection Mart

Identify the Dimensions

A procedure called the “business bus matrix” (Kimball et al., 2002) was used to identify
which dimensional tables (DDP Step 3) were required by each fact table of each data
mart. Knowing which data marts will share a dimension table ensured that these tables
were designed to conform across the relevant data marts (Table 3.10). Because
bioacoustic research (not business) activities were used, the process will hereafter be
called only the “data warehouse bus matrix”.
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Table 3.10: Data warehouse bus matrix. Granularity of research activities employed in
bioacoustic research.

Dimensions

Activity Granularity D
at
e

St
ud

y

H
ab

it
at

A
co

us
ti
c
Fi
le

Sp
ec
ie
s

Install ARUs Deployment ! ! !

Collect recordings Recording ! ! !

Identify species Detection ! ! !

The purpose of each dimension table is de�ned as follows:

Date: the year, month and day on which an event or activity occurred.

Study: the association ARUs have to each other in the context of research projects

Habitat: measured and assessed characteristics of an ARU deployment site.

Acoustic File: information about the digital �le recorded by an ARU.

Species: the taxonomic name of an organism identi�ed from an acoustic event
recorded by an ARU.

Identify Facts

Quanti�able values, as they were related to each research activity, were copied to their
respective fact tables.

Time, was considered at two scales: days and time–of–day. At the scale of days, time
was considered a nominal attribute and was represented by the Date dimension. At the
scale of time–of–day, it was considered as interval data and stored as a fact.
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Results

The results of the data processing through the steps of the Knowledge Discovery (KDD
steps 2 and 3) in Databases and the creating of a data warehouse are presented in this
section.

Knowledge Discovery in Databases Step 2 – Processing of Data to Handle
Missing and Erroneous Data

The method by which missing and erroneous data were resolved is outlined for the
attributes: dates, locations, species, water depth, wetland assessment, horizontal cover.

Dates

Of the total 7,933 ARU deployment records downloaded, missing or erroneous dates
were found in a total of 685 (19%) in the following categories:

Class 1 Missing Values (null) By selecting only records deployed before 2015,
17/7,933 (0.2%) records with null deployment dates were excluded. Retrieval dates
were found to be null in 665/3,533 (19%) of records.

Class 2 Out-of-Range One record out of 3,533 (0.03%) was found to have the
unrealistic deployment date of 1960/08/01.

Class 3 Out-of-sequence 9/3,533 (5%) records had retrieval dates that precede
deployment dates as shown in Table 3.11.

Class 4 Range Greater than one year A review of the length of time ARUs were
deployed revealed that 179/3,533 (5%) records had deployment dates greater than
365 days (Table 3.12). Since it is plausible that ARUs were deployed for one full
year (and that some in remote locations could were left until retrieval was
convenient) a threshold of greater than 1.5 years was chosen to identify unrealistic
deployment lengths, leaving 10/3,533 (0.03%) records.

Records which were in one of these four error classes were identi�ed as having invalid
or missing date values by setting their IS_COMPLETE attribute to 0.
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Table 3.11: Records where retrieval dates precede deployment dates

Deployment Date Retrieval Date Deployment Length (days)

2014-05-14 2004-05-27 -3,639

2014-06-23 2014-06-09 -14

2012-05-24 2012-05-19 -5

2014-06-24 2014-06-20 -4

2014-06-14 2014-06-12 -2

2014-05-30 2014-05-29 -1

2014-06-13 2014-06-12 -1

2014-06-16 2014-06-15 -1

2014-06-16 2014-06-15 -1

Table 3.12: Occurrence of ARU deployments exceeding 1 year in length. Records marked
in bold are considered to be erroneous.

Deployment Length (days) Number of deployments

19,686 1

6,035 1

6,010 2

4,974 2

4,973 2

4,397 1

4,027 1

411 9

410 5

367 1

366 100

Location

Deployment records were eliminated if latitude and/or longitude was not recorded and
for those points not within the Lower Athabasca Region. A total of 228/3,533 (6%) had
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incomplete coordinate data. The remaining 3,305 were imported into the GIS where
those within the study region were extracted by an overlay with the Lower Athabasca
Region polygon and imported back into the Oracle database. Those 2,077 deployment
records were then marked with a 1 in the IN_REGION attribute.

Species

Of the 122,743 records of species detections, 478 (0.5%) did not match the species codes
used by the U of A researchers. One species code (YWAR) was found which did not
match the list of possible codes. The code was recognized by this researcher to be the old
code from Yellow Warbler (Setophaga petechia) and has since been changed to YEWA.
This species code was corrected for the 443 (0.4%) records where it occurred. Three more
erroneous entries, corresponding to 10 (0.01%) records, could be reasonably attributed to
the correct codes. The remaining 25 (0.02%) were excluded from the database
(Table 3.13).
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Table 3.13: Records of species determinations from ARU recordings where the code en-
tered by the listener does not match the list used by the University of Alberta. Codes
which could be corrected are marked as bold.

Unmatched
Species Code

Correct Species
Code

Description Occurrence

NSSP — — 7

NTRLL — — 1

TTWO — — 6

UNBUTEO UNBU Unknown Buteo 1

UNCH — — 1

UNCR — — 10

UNGO — — 2

UNKI — — 1

UNTERN UNTE Unknown Tern 8

UNTRL UNTRLL Unknown Trill 1

UNTTBB — — 3

YBWO — — 1

YWAR YEWA Yellow Warbler 443

Total: 478

Within the species list used in the EMCLA database, the codes LABU, LALO and SMLO
were each used redundantly (Table 3.14). The code LABU was mistakenly used as the
code for Lazuli Bunting (Passerina amoena) and Lark Bunting (Calamospiza melanocorys)
which should have LAZB and LARB respectively. Records for the codes LALO and
SMLO were correctly used for Lapland Longspur and Smith’s Longspur, each in the
family Calcariidae but duplicate records for these species occurred under the old family,
Emberizidae.
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Table 3.14: Redundant codes (LALO, SMLO and LABU) found in the EMCLA species list.

Family Genus Species English Name Redundant Species
Code

Cardinalidae Passerina amoena Lazuli Bunting LABU

Emberizidae Calamospiza melanocorys Lark Bunting LABU

Emberizidae Calcarius lapponicus Lapland Longspur LALO

Calcariidae Calcarius lapponicus Lapland Longspur LALO

Calcariidae Calcarius pictus Smith’s Longspur SMLO

Emberizidae Calcarius pictus Smith’s Longspur SMLO

The current species codes and family designations were included in the data warehouse.
No detection records were found which contained the ambiguous code LABU, so no
corrections were required. The records containing the Emberizidae family of Smith’s
Longspur and Lapland Longspur were excluded from the DSS.

Water Depth

Water depth data was available for 736/7,933 (9%) of ARU deployments. Of the 18,787
measurements taken, 165 (0.9%) contained water depth values outside of the acceptable
range (Table 3.15) and 5 (0.03%) contained a null value. These values are most likely
“sentinel values”, used to convey a message and were excluded from the study.
Subsequent calculations were made using the remaining, valid values. The 18,616
records were used in subsequent aggregation calculations.
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Table 3.15: Water Depth measurements out of the expected range or missing.

Depth Recorded Occurrence

99999 12

9999 15

999 18

-5 3

-881 9

-882 88

-883 13

-884 7

null 5

Total 170

Wetland Assessment

Habitat assessments were available for 499/7,933 (6%) of the ARU deployment sites,
comprising 2,052 individual records. Problems were encountered where �eld technicians
deviated from the standard DUEWC codes. Four di�erent error classes were noted:
transposition of the code occurred in 6/2,052 (0.3%) records, only partial information
about the habitat was recorded in 48/2,052 (2%), more than one habitat class was
recorded for the same area in 14/2,052 (0.7%) and completely invalid information was
recorded in 120/2,052 (6%) (see Appendix Table A1)s. Additionally, 19/2,052 (0.9%)
contained null values for habitat.

Transposed entries were simply classi�ed to their intended categories but
accommodating partial classi�cations and novel classi�cations required adjustments to
the way the DUEWC system was represented in the database. Entries that speci�ed
more than one class were omitted because no valid decision could be made on the
importance of either.

Because the DUEWC system is a hierarchical classi�cation, a category called
“Unde�ned” was included at each level to accommodate entries which did not specify all
levels. Additionally, a category called “Unde�ned Fen” was included for records which
did not specify a fen’s nutrient type and the Minor Wetland Classes named
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“Anthropogenic Disturbance” and “Natural Disturbance” were added to record the noted
occurrence of habitat alterations such as �res and cutlines.

Other modi�cations were the elimination of the the Major Soil Group, as it was never
directly appraised, and the promotion to the Major Wetland Class of the categories
“Unde�ned Fen”, “Rich Fen” and “Poor Fen”, which exist as their own level between the
Major and Minor Wetland Classes. Figure 3.6 shows the modi�cations made to the
DUEWC classes.

A translation table was used to associate each non-standard DUEWC classes to the
appropriate hierarchical level in the database. Table A2 in the Appendix shows how the
translation table matched the non–standard habitat entries with auxiliary codes and
employed the added classes “Unde�ned”, “Unde�ned Fen”, “Anthropogenic Disturbance”
and Natural Disturbance.“ A total of 62/2,052 (3%) of the non-standard habitat codes
could not be included in the database.
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Horizontal Cover

Horizontal cover was available for 499/7,933 (6%) of ARU deployment sites, comprising
5,067 individual records . Of these, 57/5,067 (1%) records had values outside of the
expected range of 0% to 100% (Table 3.16). These were most likely sentinel values and
were excluded from calculations of average cover.

Table 3.16: Horizontal cover estimates.

Cover Recorded Occurrence

9999 28

666 10

-5 5

-82 14

Total: 57
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Knowledge Discovery in Databases Step 3 – Reducing Dimensionality

Acoustic Recordings

Due to insu�cient computer memory to analyze a full ten-minute stereo recording, each
�le was subdivided into 1-minute-long sections and only the left stereo channel was
analyzed. At a bitrate of 44,100 kHz, each one minute recording had 2,646,000 samples so
a PAA number of 264,600 was used for a tenfold reduction (Table 3.17).

The size of the left stereo channel of the 10 minute recording was 52.9 MB, while the �le
created by the PAA/SAX reduction was 5.3 MB (Table 3.17).

Table 3.17: Parameters for PAA/SAX reduction of a ten-minute long bioacoustic wav �le
recorded by ARU (left channel only).

Parameter Size

alphabet size 8 characters

bitrate 44,100/sec

samples in 1 minute 2,646,000

PAA (at 10 samples long) 264,600

File size (.wav format) 52.9 MB

PAA/SAX �le size 5.3 MB

Water Depth

The highly skewed water depth values for wet plots (Figure 3.7a) were transformed by
taking the natural logarithm of each value plus 1 (Equation 3.2) to create an
approximately normal distribution (Figure 3.7b). The approximately straight line formed
by a Q-Q plot con�rmed a nearly normal distribution (Figure 3.8).

The value of one was added to ensure that all transformed values were positive.

d′ = ln (d+ 1) (3.2)
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Figure 3.8: QQ plot of transformed water depth showing a nearly normal distribution.

Three fuzzy membership sets for water depth were derived from the transformed
distribution following Suh (2012). The mean, minimum, maximum and standard
deviation (D̄ , Dmin, Dmax and σ) were calculated and used to derive the values of



58

D̄shallow and D̄deep for the deep and shallow subsets of the of transformed data using
Equation 3.3 and Equation 3.4 (Table 3.18).

D̄shallow =
1

n

n∑
i=1

{
d : d < d̄− σ

}
(3.3)

D̄deep =
1

n

n∑
i=1

{
d : d > d̄+ σ

}
(3.4)

Table 3.18: Water depth values used to calculate fuzzy depth membership functions.

Value Transformed Depth
(ln(d+1))

Untrainsformed
Depth (cm)

D̄min 0 0

D̄shallow 1.06 1.89

D̄ − σ 1.45 8.46

D̄ 2.25 3.26

D̄ + σ 3.04 19.99

D̄deep 3.48 31.44

D̄max 4.66 105

These values were then “un-transformed” by raising the mathematical constant e to the
power of each transformed value (d′) and adding one (Equation 3.5).

d = 1 + ed
′ (3.5)

The un-transformed values were used to de�ne three triangular fuzzy sets (shallow,
medium and deep) (Figure 3.9) which were used to calculate the fuzzy memberships (µ)

for all un-transformed depth values at each ARU deployment (including dry plots, with
depth values of 0 cm). An arithmetic mean was also calculated.



59

deep

m
ed

iu
m

sh
al

lo
w

0 20 40 60 80 100

Depth (cm)

D
eg

re
e

of
M

em
be

rs
hi

p
(µ

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 3.9: Membership functions for un-transformed water depths

Thus, for each station water depth was reduced from 21 individual measurements to
four aggregate values: three fuzzy memberships and one simple mean. Figure 3.10
shows how an instance where fuzzy memberships re�ect the distribution of depth
measurements better than the arithmetic mean. The shaded portions of the fuzzy sets (A)
indicate higher Shallow and Deep memberships than the Medium–depth membership
which re�ects the distribution of depths recorded (dots in �gure B). In contrast very few
depth measurements are similar to the arithmetic mean, shown as a dashed line in (B).
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Figure 3.10: Water depth aggregation for a single ARU Station calculated using fuzzy
logic and by arithmetic mean. Three fuzzy sets (A) for Shallow, Medium and Deep are
shown with membership values for each (shaded areas) Shallow = 0.51, Medium = 0.09
and Deep = 0.40. The calculated arithmetic mean (B) of 19 cm is shown by a dashed line.
The distribution of depth memberships is indicated by dots in (B). The horizontal axes of
both graphs are scaled the same to allow comparison.

Horizontal Cover

The ten horizontal cover measurements collected at each ARU deployment were
aggregated to three arithmetic means, for low, high and combined cover.

Wetland Classi�cation

The area of each class was calculated as a proportion of the total bu�er area, based on
the area of the inner bu�er (A1) and the ring-shaped out outer bu�er (A2) which were
de�ned as:

A1 = πr2
1 (3.6)
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A2 = 8πr2
1 (3.7)

where r1 = 50 m and given that r2 = 150 m = 3r1 .

Although the two habitat value were reduce to a single value, the inner and outer bu�er
data were still included in the database since they re�ect the proximity of the habitats
surrounding the ARU deployment.

The cleaned and reduced data was then taken through the steps of the Dimensional
Design Process to create a data warehouse.

Implementing the Dimensional Design Process

Identify the dimensions

The dimension tables identi�ed previously through the data warehouse bus matrix
(Table 3.10) were Date, Study, Habitat, Acoustic File and Species. How each was
implemented is described below.

Date Dimension The date dimension, called DIM_DATE, was created to cover the
range of dates from 2000/01/01 to 2050/01/01 and included several �elds to enhance its
utility. The table was created to a distant future date but could be easily be extended
beyond that if the DDS is still in use by then. Table 3.19 shows the names, the formats,
ranges and suggested uses of the �elds in the date dimension.

In addition to recording the standard (Gregorian) date recorded for an event, �elds were
included to parse dates at the resolution of year, month and day, as well as count of
Julian Days Number (which is designated to have started at January 1, 4713 BCE).
Additionally, to assist in time calculations, a �ag indicating daylight savings time and
the UTC o�set for Mountain Time (corrected for Daylight Savings Time), were included.

The table can be extended beyond the current �nal date if required and future changes
to the application of daylight savings time can be incorporated through manual
adjustments.



62

Ta
bl

e
3.

19
:F

ea
tu

re
so

ft
he

da
te

di
m

en
si

on
(D

IM
_D

AT
E)

.

C
ol
um

n
N
am

e
Fo

rm
at

R
an

ge
Su

gg
es
te
d
U
se

EV
EN

T_
D

AT
E

YY
YY

/M
M

/D
D

20
00

/0
1/

01
to

20
50

/0
1/

01
To

de
te

rm
in

e
th

e
ch

ro
no

lo
gi

ca
lo

rd
er

of
ev

en
ts

.

EV
EN

T_
YE

A
R

YY
YY

[2
00

0,
20

50
]

To
gr

ou
p

ev
en

ts
by

�e
ld

-s
ea

so
n.

EV
EN

T_
M

O
N

TH
M

M
[1

,1
2]

To
id

en
tif

y
fr

eq
ue

nc
y

pa
tte

rn
so

fe
ve

nt
s

at
a

m
on

th
ly

re
so

lu
tio

n,
w

ith
in

a
ye

ar
.

EV
EN

T_
D

AY
D

D
[1

,3
1]

To
id

en
tif

y
fr

eq
ue

nc
y

pa
tte

rn
so

fe
ve

nt
s

at
a

da
ily

re
so

lu
tio

n,
w

ith
in

a
m

on
th

.

SI
N

CE
20

00
W

ho
le

N
um

be
r

[1
,1

82
64

]
To

ca
lc

ul
at

e
th

e
nu

m
be

ro
fd

ay
s

be
tw

ee
n

th
e

oc
cu

rr
en

ce
of

di
�e

re
nt

ev
en

ts
,w

ith
in

th
is

da
ta

ba
se

.

D
AY

O
FY

EA
R

W
ho

le
N

um
be

r
[1

,3
65

]n
or

m
al

ye
ar

s
[1

,3
66

]o
n

le
ap

ye
ar

s
To

id
en

tif
y

fr
eq

ue
nc

y
pa

tte
rn

so
fe

ve
nt

s
at

a
da

ily
re

so
lu

tio
n,

w
ith

in
a

ye
ar

.

JU
LI

A
N

_D
AY

W
ho

le
N

um
be

r
[2

45
15

45
,2

46
98

08
]

To
ca

lc
ul

at
e

th
e

nu
m

be
ro

fd
ay

s
be

tw
ee

n
th

e
oc

cu
rr

en
ce

of
di

�e
re

nt
ev

en
ts

,b
et

w
ee

n
an

y
da

ta
ba

se
su

si
ng

th
is

st
an

da
rd

.

IS
_D

ST
A

1/
0

�a
g

in
di

ca
tin

g
if

th
e

da
y

is
a

da
yl

ig
ht

sa
vi

ng
sd

at
e

[0
,1

]
To

id
en

tif
y

ev
en

ts
oc

cu
rr

in
g

at
st

an
da

rd
tim

e
or

da
yl

ig
ht

sa
vi

ng
st

im
e.

U
TC

_O
FF

SE
T

M
ou

nt
ai

n
Ti

m
e

zo
ne

o�
se

t
fr

om
Co

or
di

na
te

d
U

ni
ve

rs
al

Ti
m

e,
ad

ju
st

ed
fo

rd
ay

lig
ht

sa
vi

ng
st

im
e.

[6
,7

]
To

m
ak

e
co

m
pa

ris
on

sb
et

w
ee

n
ev

en
ts

in
di

�e
re

nt
tim

e
zo

ne
so

rb
et

w
ee

n
st

an
da

rd
an

d
da

yl
ig

ht
sa

vi
ng

st
im

e



63

Study Dimensions A dimension named DIM_STUDTY was prepared to contain
the hierarchical categories of Project Name, Site and Station by which ARU deployments
are logically grouped (Table 3.20).

Table 3.20: Dimension for ARU deployment data.

Field Name Description

ID_DIM_STUDY A unique identi�er for records in this table

PROJECT_NAME A collection of activities performed to answer a research question

STATION A grouping of related research activities

SITE A distinct location where research activities occurred

Habitat Dimension Because each ARU deployment could be associated with
many DUEWC habitat classes, and each habitat class could be associated with multiple
ARU deployments, a many–to–many relationship existed. To accommodate this
condition, a linking table called DEPLOYMENT_WETLAND_MEMBERSHIP was
created. Each row of this table contained the identi�cation number (ID) of a deployment
record, the ID number of a DUEWC habitat class and the proportion of the habitat
within the inner bu�er, outer bu�er and both bu�ers combined. Table 3.21 shows how
an ARU deployment with a ID_DEPLOYMENT_FACT of 11 is associated with both
ID_WETLAND_CLASSs 1 and 2, while ID_WETLAND_CLASS 1 is associated with ARU
deployments with ID_DEPLOYMENT_FACT value of 111 and 129.
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Table 3.21: Example data contained in the DEPLOYMENT_WETLAND_MEMBERSHIP,
showing how the many–to–many link between an ARU deployment and a DUEWC
wetland class is represented by allowing multiple occurrences of values in the
ID\_DEPLOYMENT\_FACT and ID\_WETLAND\_CLASS �elds.

ID
_D

EP
LO

YM
EN

T_
FA

CT
ID
_W

ET
LA

N
D
_C

LA
SS

IN
N
ER

_B
U
FF
ER

O
U
TE

R_
BU

FF
ER

W
H
O
LE

_B
U
FF
ER

111 1 1.0 0.6 0.64

111 20 (null) 0.1 0.09

129 1 0.95 0.95 0.95

Dimensional reduction of the wetland classi�cation data was accomplished by
collapsing the hierarchical structure of the DUEWC system into a single “�at �le” which
was used to construct the dimension table DIM_DUE_WETLAND_CLASSIFICATION.

Table 3.22 shows a schematic diagram of the DUEWC dimension table. Hierarchical
levels of the system are represented with two modi�cations. The Major Soil Group was
excluded because it was not directly assessed by �eld technicians and is not applicable to
Upland habitats. The Minor Wetland Classes of Rich Fen and Poor Fen were promoted to
the Major Wetland Class level, replacing the Fen category (Figure 3.6).
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Table 3.22: Schematic representation of the hierarchical structure of the Dimension for
Ducks Unlimited Enhanced Wetland Classi�cation (DUEWC) assessments used to popu-
late the DIM_DUE_WETLAND_CLASSIFICATION dimension table. Added categories are
shown in italics.

Cover Group Major Wetland Group Minor Wetland Class

Unde�ned Unde�ned

Anthropogenic Disturbance
Graminoid
Meadow

Natural Disturbance
Tamarack

Upland Upland

Deciduous
Mixedwood

Treed
Unde�ned

Wetland

Bog

Anthropogenic Disturbance
Open

Shrubby
Treed

Marsh
Emergent
Meadow

Poor Fen
Graminoid
Shrubby

Treed

Rich Fen

Anthropogenic Disturbance
Graminoid
Shrubby

Treed

Swamp

Conifer
Hardwood

Mixedwood
Shrubby

Tamarack

Unde�ned Fen
Graminoid
Shrubby
Tamarack

Acoustic File Dimension A table called DIM_FILENAME was created for the
acoustic dimension, containing a unique identi�er �eld and a text �eld for the �le name.
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Species Dimension A table called DIM_SPECIES was created for the species
dimension (Table 3.23). This table contained the attributes for the taxonomic levels from
order to species, common names in English, the standard 4-letter code used by the
American Ornithological Union (North American Classi�cation Committee, 2014) and
logical �elds for the species occurrence in Alberta and its vocalizations characteristics.

Table 3.23: Attributes of the species dimension table.

Field Name Description

ID_DIM_SPECIES A unique identi�er for each record

TAX_ORDER Taxonomic order

FAMILY Taxonomic family

GENUS Taxonomic genus

SPECIES Taxonomic species

ENGLISH_NAME Non-technical English name for a animal

CODE Standard American Ornithological Union
4-letter codes plus EMCLA codes

IN_ALBERTA Boolean (Yes/no) indicating the natural
occurrence in Alberta

SONG_VOCAL Boolean (yes/no) indicator if the animal
vocalizes a song

CALL_VOCAL Boolean (yes/no) indicator if the animal
vocalizes a call

NO_VOCAL Boolean (yes/no) indicator if an animal creates
a non-vocal sound

Identify the facts

Fact tables for each of the research activities identi�ed in Table 3.10 were created and
loaded with the the corresponding data. The contents of the fact and dimension tables
for each data mart are described below, followed by a diagram of each.

Deployment Mart This data mart was created to contain the temporal, spatial
and habitat context associated with the installation of an ARU.
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Numeric attributes included in the DEPLOYMENT_FACT table were: geographic
coordinates, water accumulation, mean horizontal cover, mean water depth,
memberships in the fuzzy water depth sets and the proportional of each CanVec+
habitat category around the ARU deployment site.

The following relationships were made to dimension tables: DIM_STUDY, DIM_DATE
(one each for deployment and retrieval of the ARU) and
DIM_DUE_WETLAND_CLASSIFICATION through the
DEPLOYMENT_WETLAND_MEMBERSHIP linking table (Figure 3.11).

Recording Mart This data mart was created to contain temporal and metadata
associated with the acquisition of bioacoustic recordings from ARUs.

The attributes contained in the RECORDING_FACT table were: the time when the
recording started, the number of minutes before and after sunrise, the number of
minutes before and after sunset and the symbolic representation of the recording.

Relationships were made to the dimension tables: DIM_DEPLOYMENT,
DIM_FILENAME and DIM_DATE (Figure 3.12).

Detection Mart This data mart was created to contain the temporal and taxonomic
information associated with the identi�cation of species from bioacoustic recordings.

The DETECTION_FACT table contains only links to the dimension tables: DIM_DATE,
DIM_FILENAME and DIM_SPECIES (Figure 3.13).

All data marts combined to form the full data warehouse as show in the Appendix,
Figure A1.
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Discussion

This research demonstrated the creation of a data warehouse for an existing set of
bioacoustic research data following the Knowledge Discovery in Databases (KDD)
procedure and the Dimensional Design Process (DDP). The data warehouse was
composed of three data marts, created to house data associated with three research
activities: deployment of ARUs (Deployment Mart), creation of bioacoustic recordings
(Recording Mart) and the identi�cation of species from these recordings (Species Mart).
These data marts were related to each other through shared dimension tables
(Figure A1). The data warehouse was created as the starting point of a Decision Support
System for bioacoustic data processing. The data warehouse could equally be used to
facilitate exploration of the data to �nd patterns which could inspire new research. The
remainder of this section discusses the issues and advantages encountered in creating
the data warehouse.

A key issue in creating the data warehouse was problematic records encountered in the
data. These result from the inherent di�culties in collecting ecological data under �eld
conditions, measuring ecological components and from the inexperience of �eld
technicians. The presence of these inconsistencies highlight the need to seek and
address missing and erroneous data (KDD step 2). A thorough understanding of the
ecological components being characterized and the techniques used to measure them
must be possessed to assess the validity of each attribute. In this research data was
validated by a comparison to the domain of values expected for the instrument or
techniques used (e.g.: 0 cm to 100 cm for water depth measured with a meter stick) but
also by comparison to the values of related attributes (e.g.: con�rmation that each ARU’s
deployment date precede its retrieval date).

Attempts were made to glean as much information as possible from non–standard data
because �eld data is expensive to collect and often represents an ephemeral set of
conditions. Knowledge of the data was necessary to make decisions on how erroneous
data should be handled. Where errors impacted the certainty of the time and location of
a species detected from a recording, those deployment records were omitted. But, in
circumstances where enough data remained to serve the original purpose, only
problematic attributes were omitted. This was the case for deployment sites where some
water depth measurements were invalid, the remaining valid measures were used to
characterize that ecosystem attribute. Without an understanding of the data, judgments
such as these would not be possible.
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Errors were also found where judgment was required to categorized ecosystems within
an established classi�cation scheme, in this case the Ducks Unlimited Enhanced Wetland
Classi�cation (DUEWC) system. These ranged from simple transpositions of the
conventional codes, to entries indicating only part of a habitat class, to entries with
indicated multiple classes simultaneously, to entries indicating conditions not classi�ed
in the DUEWC system. In cases where ambiguity was present, the records were omitted.
Inclusion of many non–standard entries in the data warehouse was made possible by the
way the DUEWC system was represented within the data. By treating each class of the
hierarchical system as an attribute, the known part of incomplete entries could be
assigned a value while the missing class could be assigned a new value called
“Unknown”. For example, rather than recording a site as having a DUEWC class
Tamarack Swamp (STM), all levels of the hierarchy are speci�ed as follows: Broad Cover
Group = “Wetland”, Major Wetland Class = “Swamp” and Minor Wetland Class =
“Tamarack”. By the addition of class values not encompassed in the DUEWC system
(e.g.: “Anthropogenic Disturbance”) more non–standard data were included.

In some instances attribute values were found to be so far outside the expected domain
they must represent a attempt by the �eld technician to communicate why a certain
measurement could not be taken using a “sentinel values”. The presence of sentinel
values indicates a need to allow �eld sta� to record when a value could not be measured
(which should be entered as a NULL value in the data base). When designing protocols
for the collection of �eld data, researchers should anticipate as far as possible, conditions
where data collection may not be possible or the ecological attribute may not conform to
expectations. Procedures and data collecting interfaces (computer or paper based)
should be designed to allow �eld sta� to record this information in ways which do not
contaminate data with “sentinel values”. Interfaces should also be designed with
validation checks to prevent collection of data which does not comply to the domain of
possible values.

One advantage of transforming date to include in a data warehouse is the opportunity to
choose techniques which can best represent the meaning of the data through
aggregation (KDD step 3). In this research, water depth measurements were taken at 21
points around some ARU station in order to characterize the surrounding wetland. While
a simple arithmetic mean was calculated, fuzzy logic was also used to derived a more
nuanced description of the habitat. There is a great deal of plasticity in the technique,
for instance there is no “correct” way to create the fuzzy sets used. In this research the
distribution of data was used to derived the sets meaning that membership of a site in
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each set is relative to all sites. The fuzzy sets could also have been de�ned to re�ect
expert knowledge, such as the preferred habitat of a species of interest. The decision of
how to apply fuzzy logic to the data is where ecologists are able to express the ecological
“meaning” of the data in a way which best represents the ecosystem component.

Similar to aggregation, managing digital �les in a way which facilitates machine
processing is a challenge increasingly faced by ecologists as more a�ordable data loggers
become available. Time–series data are produced by many other devices now being
employed in ecology, such as light–level archiving “geolocators” and miniature
“iButton” environmental monitors (Dallas Semiconductor – a subsidiary of Maxim
Integrated Products, Sunnyvale, California). Making these data searchable in a data
warehouse greatly increases an ecologists ability to analyze their results. In this thesis
PAA/SAX was chosen to reduce bioacoustic ARU �les to a series of characters. Di�erent
techniques to reduce time–series signals may be suited to di�erent data or for di�erent
interpretations. However, an ecologist does not have to chose one reduction technique
but can store multiple approximation of their time series.

Another advantage of using a data warehouse is the ability to easily include data from
other sources and by calculation. For example, habitat classi�cations and water
accumulation measures were extracted from a GIS while recording times were calculated
relative to sunrise and sunset. In the �rst case, data which was impractical to measure
from ground surveys was achieved from thematic maps. In the second case time, as
perceived by the organisms under study, was made available for analysis. The data mart
structure of the Kimball (1996) data warehouse allows additions of derived data through
adding attribute to the Fact or Dimension tables, by adding new Dimension tables or by
adding new data marts.

How the data warehouse created in this thesis could be applied to the proposed DSS, as
well as considerations for the general use of data warehouses in ecology, are presented
in the next chapter.
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Chapter 4

Conclusion

This research was inspired by the author’s observations on the changing �eld of avian
monitoring, where Autonomous Recording Units (ARUs) have been replacing surveys
conducted by expert human “birders”. While expanding the number of avian surveys
conducted, ARUs have introduced the burden of processing large numbers of bioacoustic
�les. Expert human “listeners” are still required to identify species from the recorded
vocalizations, although there is an active e�ort aimed at fully automating this process.
To help listeners keep pace with the production of bioacoustic recordings, a Decision
Support System (DSS) was suggested which would identify likely species based on
acoustic features and recording context. A major component of the DSS, a data
warehouse, was created in this research.

The contribution of this thesis was to outline the creation of a data warehouse for a set
of bioacoustic data in order to illustrate how a data warehouse can be built from existing
ecological data which was not collected for this purpose. Although this data warehouses
was designed as a component of a DSS, the utility of this data structure in accessing
large amounts of data from multiple sources makes it useful by itself. Data warehouses
are not commonly used by ecologists, though it can be argued that they are more suited
to the research �eld than to the business world for which they were developed. In a
business case, the primary activity is to conduct �nancial transactions, while the
analysis of archived data is an important but secondary task. Conversely, ecologists and
other researchers collect data primarily to be analyzed.

Two other techniques not widely used in ecology were also described. First, fuzzy logic,
which is used mostly in engineering, was used to represent the imprecise habitat
attribute of “wetness” at ARU sites. Second, Piecewise Aggregate Approximation and
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Symbolic Aggregate approXimation (PAA/SAX), which were developed in the �eld of
computing science to reduce time series data, were used to improve the searchability of
bioacoustic recordings. These techniques are useful to represent, in a data warehouse,
two common types of ecological data: imprecise data due to the di�culty of measuring
and categorizing ecological components and time series data generated by data loggers.

The utility of the data warehouse as part of the proposed DSS can not be tested until the
rest of the DSS is created and its e�ectiveness at assisting human listeners to process
bioacoustic recordings can be assessed. This would require not only an evaluation of
how easily the desired attributes could be retrieved but also whether the attributes
stored would be su�cient to allow the DSS to make useful species suggestions. However,
the value of a data warehouse for ecologists is not restricted to a speci�c application.

The general bene�t of a data warehouse to an ecologist is that it provides a tool which
can be used to easily explore the combined results of multiple related research projects.
Attributes of interest can be extracted and further explored with data mining software
or statistical packages in order to discover patterns that suggest potential ecological
relationships which in turn can be the focus of future research. The query in Appendix B
shows the relative simplicity of querying the data warehouse for attributes from the �eld
data (latitude), derived from GIS analysis (water accumulation), aggregated from the
�eld data (mean water depth) and calculated (fuzzy member ships for Shallow, Medium
and Deep water depths). While there are many reasons for ecologists to move their data
to a data warehouse, there are considerations to be made before beginning that project.

Creating a data warehouse is a signi�cant undertaking, requiring an appreciable
investment of time and resources. Much of this time is taken with cleaning the data, so
is productive even if a data warehouse is not desired. Deciding which attributes are
stored in a data warehouse is also a serious consideration, especially when aggregate
values are to be stored instead of raw values. In this research fuzzy memberships for
water depth was stored in the data warehouse, but the predictive power of these
attributes was not tested so the arithmetic mean was also included. Likewise, as the �eld
of bioacoustics evolves, PAA/SAX may not prove to be the best technique to reduce
bioacoustic recordings. Here again, a di�erent reduction can be derived and added to the
data warehouse. These decisions must be informed by a thorough understanding of the
data and the ways in which the data are to be used.

The next steps in this research are to continue development of the DSS, adding the
reference library of acoustic and context attributes of candidate species, developing data
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mining algorithms to match patterns between the acoustic recording and context to the
reference library and creating a user interface. Assessment should be made on the
e�ectiveness of the DSS to reduce processing time of bioacoustic recordings and any
e�ect on accuracy. A comparison should also be made between the predictive power of
fuzzy water depth memberships and mean water depth as measures of habitat
preference. As well, further evaluation should be made of the e�ectiveness of PAA/SAX
reduction of the bioacoustic recordings to be used for isolating and di�erentiating
acoustic events.

This thesis demonstrates that moving ecological data into a data warehouse is possible
and suggests many ways in which this can be an advantage to ecological research. The
speci�c application of the data warehouse, to develops a DSS for bioacoustic processing,
is something this researcher hopes to continue to develop.
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Appendix A

Oversized tables and �gures referenced in the thesis.

Table A1: Habitat values recorded by �eld sta� which do not match standard DUEWC
category abbreviations. The total of each category is shown at the bottom of the table as
well as the number of entries which could not be matched.
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? 1 ! !

BETULA 1 ! !

BHS 1

BOG 2

BOG UPLAND 2 ! !

BPR? 1 ! !

BURN 1 !

CATT 2 ! !

COMPRESSOR 3 !

CUTBLOCK 3 !

cutline 1 !

CUTLINE 51 !

FR6 1 ! !

continued on next page
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Table A1: Habitat values recorded by �eld sta� which do not match standard DUEWC
category abbreviations. The total of each category is shown at the bottom of the table as
well as the number of entries which could not be matched.
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FRT + FRS 2 ! !

FSR 2

GFEN 2 !

GRAM FEN 14 !

GRAMINOID 2 !

GRAMINOID FEN 2 !

HIGHWAY 3 !

HWY 5 !

ILLEGIBLE 2 ! !

LAKE 1 !

NV 8 ! !

OF 4 !

OPEN FEN 4 ! !

OPWA 11

PATTERNED FEN 3 ! !

QUAD 2 !

RFG 2 !

ROAD 3 !

SEISMIC 20 !

SEISMIC LINE 1 !

SHRUBBY + TREED 2 ! !

SHRUBBY FEN 2

continued on next page
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Table A1: Habitat values recorded by �eld sta� which do not match standard DUEWC
category abbreviations. The total of each category is shown at the bottom of the table as
well as the number of entries which could not be matched.
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SHWBBY + GRAM FEN 2 ! !

SHWBBY + GRAMINOID FEN 2 ! !

SLOUGH 1 ! !

SNOWMOBILE TRAIL 1 !

SRH 2 !

STRING 2 ! !

TAMARACK 2 !

TF 1 !

TREED FEN 24 !

UNC 2 !

UNKNOWN 2 ! !

WELLPAD 2 !

null 19 !

Totals: 6 48 14 120 62
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Table A2: Translation of non-standard DUEWC habitat classi�cations to the three hier-
archical levels of the classi�cations system, employing additional classes when necessary
(shown in italics).

Value
Entered

Auxillary
Codes

Broad Cover
Group

Major Wetland
Group

Minor Wetland
Group

BHS BSH Wetland Bog Shrubby

BOG BOG Wetland Bog Unde�ned

BURN _DN Unde�ned Unde�ned Natural
Disturbance

COMPRESSOR _DA Unde�ned Unde�ned Anthropogenic
Disturbance

CUTBLOCK _DA Unde�ned Unde�ned Anthropogenic
Disturbance

CUTLINE _DA Unde�ned Unde�ned Anthropogenic
Disturbance

FR6 FR_ Wetland Rich Fen Unde�ned

FSR FRS Wetland Rich Fen Shrubby

GFEN F_G Wetland Unde�ned Fen Graminoid

GRAM FEN F_G Wetland Unde�ned Fen Graminoid

GRAMINOID __G Unde�ned Unde�ned Graminoid

GRAMINOID
FEN

F_G Wetland Unde�ned Fen Graminoid

HIGHWAY _DA Unde�ned Unde�ned Anthropogenic
Disturbance

HWY _DA Unde�ned Unde�ned Anthropogenic
Disturbance

LAKE WAT Wetland Water Open

MEADOW _MD Unde�ned Unde�ned Meadow

OPWA WAT Wetland Water Open

QUAD _DA Unde�ned Unde�ned Anthropogenic
Disturbance

continued on next page
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Table A2: Translation of non-standard DUEWC habitat classi�cations to the three hier-
archical levels of the classi�cations system, employing additional classes when necessary
(shown in italics).

Value
Entered

Auxillary
Codes

Broad Cover
Group

Major Wetland
Group

Minor Wetland
Group

RFG FRG Wetland Rich Fen Graminoid

ROAD _DA Unde�ned Unde�ned Anthropogenic
Disturbance

SEISMIC _DA Unde�ned Unde�ned Anthropogenic
Disturbance

SEISMIC LINE _DA Unde�ned Unde�ned Anthropogenic
Disturbance

SHRUBBY
FEN

F_S Wetland Unde�ned Fen Shrubby

SNOWMOBILE
TRAIL

_DA Unde�ned Unde�ned Anthropogenic
Disturbance

SRH SHR Wetland Swamp Hardwood

TAMARACK _TM Unde�ned Unde�ned Tamarack

TF F_T Wetland Unde�ned Fen Tamarack

TREED FEN F_T Wetland Unde�ned Fen Tamarack

UNC UCN Upland Upland Treed

WELLPAD _DA Unde�ned Unde�ned Anthropogenic
Disturbance

cutline _DA Unde�ned Unde�ned Anthropogenic
Disturbance

meadow _MD Unde�ned Unde�ned Meadow
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Appendix B

Sample query and results from the data warehouse.

Box B1: Query written for the data warehouse created in this thesis for the purpose of
extracting some of the context data for recordings where Yellow Rails (species id = 2333)
had been identi�ed.

SELECT
DETF.ID_DIM_SPECIES,
DEPF.LATITUDE,
DEPF.WATER_ACCUM,
DEPF.CANVEC_WATERBODY_PROP,
DEPF.CANVEC_WETLAND_PROP,
DEPF.TOTAL_HORIZONTAL_COVER,
DEPF.MEAN_DEPTH,
DEPF.MF_MEAN_SHALLOW,
DEPF.MF_MEAN_MEDIUM,
DEPF.MF_MEAN_DEEP

FROM DEPLOYMENT_FACT DEPF
INNER JOIN RECORDING_FACT RECF
ON DEPF.ID_DIM_STUDY = RECF.ID_DIM_STUDY
INNER JOIN DETECTION_FACT DETF
ON RECF.ID_DIM_FILENAME = DETF.ID_DIM_FILENAME
WHERE DETF.ID_DIM_SPECIES = 2333;
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Table B1: The �rst ten records returned from the query (above) executed on the data
warehouse created in this thesis.

ID
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2333 55.05376 114.1989 (null) 1 (null) (null) (null) (null) (null)

2333 56.11446 45.19996 (null) (null) (null) (null) (null) (null) (null)

2333 55.79884 11.90459 (null) (null) (null) (null) (null) (null) (null)

2333 54.62604 109.2803 0.82 0.18 (null) (null) (null) (null) (null)

2333 54.62604 109.2803 0.82 0.18 (null) (null) (null) (null) (null)

2333 54.55645 75.72627 0.03 0.74 0.391 0.95 0.92 0.08 0

2333 54.56444 174.6789 (null) 0.91 0.525 5.62 0.53 0.43 0.05

2333 57.48545 6.753703 0.3 0.02 (null) 7.29 0.86 0 0.14

2333 57.45776 315.0177 (null) 1 (null) (null) (null) (null) (null)

2333 57.43589 1.600749 (null) 1 (null) 5.71 0.4 0.58 0.02
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