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ABSTRACT 

The importance of thermal features to habitat selection by terrestrial ectotherms such 

as reptiles has been well documented, but rarely has it been considered in larger-scale 

analyses of habitat use and selection, such as those routinely conducted using more-standard 

habitat features such as vegetation types and physical structure.  Selection of habitat based on 

thermal attributes may be of particular importance for ectothermic species, especially in 

colder climates.  In British Columbia, Canada, Western Rattlesnakes (Crotalus oreganus) 

reach their northern limits.  While commonly associated with low-elevation grasslands and 

open Ponderosa pine habitats, recent work indicates that some populations of these animals 

may use higher-elevation Douglas-fir forests.  The reasons and implications for this striking 

contrast of habitat use patterns by these animals was the subject of this thesis.  I investigated 

the reason(s) for this phenomenon by monitoring the migratory movements of 35 snakes 

away from 10 different den sites, and comparing it to thermal landscape GIS maps generated 

for different periods of the active season.  My work confirmed that dichotomous habitat use 

by denning populations of these snakes occurs throughout much of their range, and 

rattlesnakes in this region can no longer be strictly associated with grassland habitat.  I found 

that snakes utilizing the higher-elevation forests not only moved relatively further during the 

course of their annual migrations, but were also more likely to use warmer areas of the 

landscape during their annual migration.  In addition to thermal benefits, prey availability 

and/or outbreeding may be at least partially responsible for these patterns, but at this time 

there is limited data to test these alternative hypotheses. Regardless, snakes utilizing the 

higher-elevation forests had better body condition, indicating a definite advantage to this 

strategy.  On a smaller scale, thermoregulatory behaviours appear to be less constrained by 

thermal factors in forest habitats, potentially allowing forest snakes increased time for 

hunting and travelling.  Insight into these and other behavioural differences between 

neighbouring rattlesnake populations will allow managers to tailor management strategies to 

specific dens. Finally, the local and landscape scale patterns I detected have obvious 

repercussions for snakes in the event climate change produces shifting ecosystem boundaries 

and thermal regimes. 
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CHAPTER 1. GENERAL INTRODUCTION AND BACKGROUND INFORMATION 

Understanding habitat and resource use on multiple scales is fundamental to the 

conservation and management of any wildlife species. Habitat and resource selection can be 

defined as a hierarchical process through which an animal “decides” by innate and/or learned 

behaviours what resources and components of a habitat to utilize (Johnson 1980, 

Hall  et  al. 1997). Habitat itself has been defined by Hall et al. (1997) as the resources and 

conditions in an area that enable the survival and reproduction of an organism. This includes 

vegetation attributes, geographic features, and a host of other factors. Within the past decade, 

the measurement of habitat and resource selection by animals has grown increasingly 

complex (Rhodes et al. 2005, Frye et al. 2013, Byrne et al. 2014), with particular focus being 

directed towards different scales of selection. These scales include (but are not limited to) 

geographic range, home range and habitat use within a “home range” (Johnson 1980). 

Temperature or thermal attributes on a variety of scales may be important in the 

selection of resources by ectotherms (such as reptiles), just as vegetation may be key to 

habitat selection by herbivores. However, the availability of heat is less-easily recognized, 

mapped, or quantified. The thermal landscape is a result of the complex relationship between 

incoming solar radiation, terrain and ground cover (Huang et al. 2014). Many studies have 

considered various aspects of behavioural thermoregulation in reptiles (Huey 1974, 

Diaz 1997), and there is consensus that habitat features influence thermoregulation are 

important factors in habitat selection by these animals (Diaz 1997, Blouin-Demers and 

Weatherhead 2001a). The relationship between the thermal environment and resource 

selection in reptiles has been investigated primarily on very fine scales. Thermal resource 

selection on a landscape scale, however, has rarely been considered. It is possible that 

ectothermic animals, such as reptiles, evaluate the thermal ‘quality’ of habitat, essentially 

viewing thermal regime as an environmental resource (Huey 1991) and a component of  

habitat selection.   

Selection for thermal resources may be particularly important for reptiles in northern 

temperate zones, where they experience a broad suite of climatic conditions, both seasonally 

and on shorter time scales.  Cooler temperatures and a shorter active season present 

challenges (Gregory 2009, Macartney et al. 1989). Thermal conditions also vary spatially as 
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a result of environmental factors, such as vegetation cover and terrain (e.g., slope and 

aspect). As many physiological processes in reptiles are temperature dependent, there exists 

an optimal range of internal temperatures that may be maintained by physiological, 

morphological and/or behavioural adaptations. Above and below this range, an animal’s 

performance is suboptimal (Huey and Stevenson 1979 ). Operating within this optimal range 

will result in higher efficiency while foraging or avoiding predation, in turn leading to 

increased reproductive success and, eventually, increased fitness (Huey and Berrigan 2001). 

The benefit of an ectothermic strategy is that animals are able to convert a larger portion of 

assimilated energy into growth and reproduction (Gans and Pough 1982) and can therefore 

survive in less productive ecosystems.  The cost, however, is that time devoted to 

thermoregulation is time not spent feeding or mating, both of which directly influence fitness 

(Blouin-Demers and Weatherhead 2001a), and that animals forced to expose themselves 

more during thermoregulatory activities (e.g., basking) may experience increased predation 

risk (Blouin-Demers and Weatherhead 2002b). 

Reptiles have evolved life history strategies and tactics to deal with fluctuations in 

temperature. For some species, cold winter temperatures require hibernation (Aleksiuk 1976, 

Gienger and Beck 2011, Harvey and Weatherhead 2006, Leuth 1941), either in individual 

retreats (e.g., gopher snakes, Bertram et al. 2001) or in communal hibernacula (e.g., 

rattlesnakes and garter snakes, Bertram et al. 2001, Macartney et al. 1989). During the active 

season, snakes may undergo annual migrations on a variety of scales in search of resources, 

potentially including thermal conditions that would allow the snake to remain within 

tolerance limits for temperature. For instance, in rattlesnakes, the acknowledged optimal 

range of temperatures is 26.5ºC to 32ºC (Klauber 1982), although these snakes are able to 

withstand temperatures near the freezing mark (Hobbs 2007) and as high as 37ºC (voluntary 

maximum) (Klauber 1997). As reptiles have limited internal thermoregulatory mechanisms, 

they generally regulate body temperature through behaviour. Thermoregulation may include 

both small scale (local) movements (e.g. from open areas to cover objects) as well as large 

scale (migration) movements. Thermal selection at landscape scales may be particularly 

important to terrestrial reptiles that routinely undergo energetically expensive annual 

migrations, notably snakes in northern regions (Macartney and Gregory 1988, 

Macartney et al. 1988, Larsen et al. 1993, DeGregorio et al. 2011). 
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The conservation of snakes living in temperate zones is of increasing concern, to a 

large extent due to the thermal constraints placed on these animals by living in cooler 

regions.  Understanding the thermal ecology of these species, and the relationship between 

thermal ecology and resource selection, is important in successful conservation of snake and 

lizard species at northern latitudes. As temperatures affect physiological processes including 

reproduction and growth, thermal ecology can be directly linked to population dynamics 

(Peterson et al. 1993). Cooler environments contribute to limitations on population growth, 

by way of biennial (or longer) reproductive cycles and costly migrations, and therefore, can 

impact overall success of a species. These natural population constraints are then coupled 

with anthropogenic stressors, making these populations more susceptible to impacts. As most 

ectothermic species in Canada occur at their northern most range limit, and at low density 

(Lesica and Allendorf 1995), increasing our knowledge of thermal ecology and effectiveness 

of protection and management strategies is imperative for conservation. Now, more than 

ever, we need to understand how animals are responding to their environment in terms of 

resource use and selection, including thermal relationships. 

The Western Rattlesnake: status and ecology 

The Western Rattlesnake (Crotalus oreganus; Figure 1.1) is the northernmost viper 

(Family Viperidae) in the Western Hemisphere. The species’ range extends from northern 

California, USA, to the southern interior of British Columbia, Canada. Within British 

Columbia, the animals have a disjunct range: The northern part of their range stretches east 

from the town of Lytton, south to Merritt, and north to the city of Kamloops, approximately 

190 km north of the USA border. In southern BC, they are found throughout the Okanagan 

valley as far north as the city of Vernon, approximately 140 km from the USA border. Two 

small populations occur in the Boundary regions of Grand Forks and Christina Lake, close to 

the border with the USA (Figure 1.2). Due to the limited range of the animal in Canada, and 

the high degree of human pressure in this part of British Columbia, the Western Rattlesnake 

currently is considered of ‘Special Concern’ within the province of British Columbia 

(BC Conservation Data Centre 2015), while being designated as ‘Threatened’ at the federal 

level (Committee on the Status of Endangered Wildlife in Canada 2015). 
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Western rattlesnakes are one of three venomous snakes in Canada 

(Matsuda et al. 2006), and one of the larger snake species in British Columbia, with adult 

snout-to-vent lengths (SVL) reaching 1.2 m (Ashton 2001, Macartney et al. 1990). Western 

rattlesnakes prey upon a variety of animals across their range. Small mammals make up the 

bulk of their diet and can include squirrels, marmots, chipmunks, voles, shrews, deer mice, 

and rabbits (Macartney 1989, Wallace and Diller 1990). In British Columbia, birds, 

amphibians, and other snakes are occasionally consumed as well (Macartney 1989).  

Western rattlesnakes are viviparous snakes, with females giving birth to live young 

on a triennial or longer cycle (Macartney and Gregory 1988). Mating occurs in June though 

to August; however, fertilization is delayed until emergence from hibernation the following 

spring (Macartney 1989). Following a gestation period of 3-4 months during which gravid 

females generally remain in the vicinity of the den and abstain from feeding 

(Macartney 1989), young are born in August or September, and enter hibernation shortly 

thereafter. The physical condition and survival of post-parturient mothers is reduced 

compared to non-reproductive and gravid females (Macartney 1985). This is related to high 

rates of energy loss during gestation and reduced energy intake in the reproductive year 

(Amarello et al. 2011). Delayed physical recovery from reproduction is associated with the 

relatively lengthy reproductive interval (Macartney 1985). Males and non-gravid females 

generally migrate away from the hibernacula into habitats used for foraging and mating 

(Macartney 1985). In British Columbia, rattlesnakes are generally associated with dry, semi-

arid grassland ecosystems and open Ponderosa pine forests (Matsuda et al. 2006). 

Hibernacula are typically found on south-facing slopes, between 500-625 m of elevation and 

associated with rocky outcrops, fissures and talus slopes (Macartney and Gregory 1988, 

Bertram et al. 2001).  

Rattlesnakes in British Columbia occupy hibernacula from approximately October to 

April (Macartney 1985, Macartney and Gregory 1988). The distribution of rattlesnakes 

during the active season, from May to September, is considerably less clear. Recent work by 

Gomez et al. (2015) has led us to question the stereotypic association between rattlesnakes 

and grassland habitats. Both large and small movements in grassland and open forested 

habitats have been documented (Charland et al. 1993, Gomez et al. 2015, Brown et al. 2009, 

Lomas et al. 2015). Movements and habitat associations appear to vary considerably 
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Figure 1.1. An adult Western Rattlesnake (Crotalus oreganus) in coarse woody debris north 
of Kamloops, British Columbia (photo by author). 
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Figure 1.2. The range of the Western Rattlesnake (Crotalus oreganus) in the Southern 
Interior of British Columbia (adapted from BC Conservation Data Centre 2015). Inset 
(International Union for Conservation of Nature 2015) depicts the location of the species’ 
range relative to North America. 
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between populations, and snakes in at least one population have been documented travelling 

to and using higher elevation Douglas-fir forests as summer habitat, rather than staying in the 

‘traditional’ lower-elevation grasslands habitat and mid-elevation Ponderosa pine open-forest 

(Gomez et al. 2015). This observation supports anecdotal reports of rattlesnakes using 

forested habitats (Charland et al. 1993). While the use of forest habitat by rattlesnakes has 

been documented in other parts of North America (Reinert and Zappalorti 1988, Harvey and 

Weatherhead 2006, Waldron 2006), this phenomenon has yet to be thoroughly examined in 

British Columbia. The motivation for using these atypical habitats is unclear, although 

thermal habitat selection at various levels may explain significant departures from traditional 

habitat associations.  

In this thesis, I explore the relationship between active season movements of Western 

Rattlesnakes and the thermal properties of the landscape. Radio-telemetry and GIS modelling 

were used to study the seasonal movement patterns of rattlesnakes originating from a number 

of dens within the range of the animal in British Columbia.  For each denning population, I 

predicted the snakes’ migratory behaviour according to the thermal properties of the 

surrounding landscape.   

More specifically, my thesis addresses the following questions: 

1. Do thermal patterns on the landscape dictate the migratory movements

of rattlesnakes in British Columbia?

2. Do thermal attributes of landscapes influence the snakes’ habitat

selection on a fine scale?

3. Are there costs and benefits associated with using habitats that differ

in thermal properties?

In the remaining portion of this chapter, I will provide a more detailed overview of 

my study sites within the range of rattlesnakes in the Thompson-Nicola and Okanagan-

Similkameen valleys of British Columbia. In Chapter 2, I combine radio-telemetry locations 

of rattlesnakes with a Geographic Information System (GIS) model to investigate and 

characterize the thermal properties of open and forested habitats used by the animals. In 

Chapter 3, I examine the thermoregulatory consequences to the snakes of occupying different 
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habitats over the summer months. Lastly, in Chapter 4, I summarize my findings and discuss 

the implications that my results have on management and conservation of the Western 

Rattlesnake in British Columbia. 

 Study site description 

Over two field seasons in 2010 and 2011, I studied Western Rattlesnakes at 6 sites in 

the Thompson-Nicola region (50.8°N, 120.6°W) and 4 sites in the Okanagan-Similkameen 

region (49.3°N, 119.6°W), two of the largest areas in the rattlesnakes’ range in the Southern 

Interior of British Columbia (Figure 1.3).  

The Thompson-Nicola and Okanagan-Similkameen valleys consist of mostly semi-

arid grassland and dry-forest habitats (Grassland Conservation Council 2004) (Figure 1.4). 

At lower elevations, bunchgrass grasslands dominate, with dominant species being 

Bluebunch Wheatgrass (Agropyron spicatum) and Big Sagebrush (Artemisia tridentata). 

Under the province’s biogeoclimatic classification system (Meidinger and Pojar 1991), this 

vegetation community is denoted as the Bunchgrass zone.  In most areas, the Bunchgrass 

zone transitions into the Ponderosa zone, which is characterized by dry forest of primarily 

Ponderosa Pine (Pinus ponderosa) with a bunchgrass understory. In some locations; 

however, the Bunchgrass zone transitions directly into the Interior Douglas-fir zone. With 

increasing elevation, and/or a shift to north-facing slopes, Douglas-fir (Pseudotsuga 

menziesii) becomes the more prominent tree species with a low understory of shrubs and 

grasses. Open habitats were characterized as having less than 10% canopy cover and 

generally occurred at elevations of 300 to 800 m in the Bunchgrass and Ponderosa Pine 

biogeoclimatic zones. Forested habitats, those with greater than 10% canopy cover, generally 

occur at elevations of 500 to 1200 m, and in the Interior Douglas-fir biogeoclimatic zone. 

The climate in these valleys is characterized by hot, dry summers and cold (below 

zero) winters with little precipitation. The average temperatures in the Thompson-Okanagan 

during this study (2010 and 2011) were similar to the temperatures seen over the last 40 years 

(Figures 1.5 and 1.6). Precipitation during the study varied, although not significantly, from 

the 30-year historical average, with increased rain in the late springs and drier conditions in 

late summers (Figure 1.7; Environment Canada 2013). 
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Figure 1.3. Location of study sites within the range of the Western Rattlesnake in British 
Columbia, Canada. 
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Figure 1.4. Typical and atypical habitat associations for the Western Rattlesnake in British 
Columbia. Open grassland habitats generally occur at elevations of 300 to 800 m in the 
Bunchgrass and Ponderosa Pine biogeoclimatic zones. Forested habitats generally occur at 
elevations of 500 to 1200 m in the Interior Douglas-fir biogeoclimatic zone (Meidinger and 
Pojar 1991). Hibernacula typically occur at elevations of 500 to 625 m on south-facing, rocky 
slopes (photos by author).
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Figure 1.5. The mean maximum and minimum daily temperatures in the Thompson-Nicola 
region during the year of this study (2010 and 2011) as compared to the historical 30-year 
average daily maximum and minimum temperatures (Environment Canada 2013). 
Temperatures measured at the Kamloops Airport. 
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Figure 1.6. The mean maximum and minimum daily temperatures in the Okanagan-
Similkameen region in 2010 and 2011 as compared to the historical 30-year average daily 
maximum and minimum temperatures (Environment Canada 2013). Temperatures measured 
at the Penticton Airport. 
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Figure 1.7. Monthly precipitation in the Thompson-Nicola (above) and Okanagan-
Similkameen (below) regions in 2010 and 2011 as compared to the historical 30-year average 
(Environment Canada 2013). Precipitation measured at the Kamloops and Penticton Airports.
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CHAPTER 2. MODELLING USE OF FOREST HABITATS BY WESTERN 

RATTLESNAKES: DO THERMAL PATTERNS ON THE LANDSCAPE DICTATE SNAKE 

MOVEMENT PATTERNS? 

INTRODUCTION 

Migrations occur when animals move explicitly to take advantage of resources that 

are distributed through the environment (Duvall et al. 1990, Dingle and Drake 2007, 

Ramenofsky and Wingfield 2007, Dingle 2014, Hopcraft et al. 2014).  Generally, these 

resources will be food, water or mates (Ashton 2003), although refuge from environmental 

conditions may also come into play (Dingle 2014). For animals inhabiting cooler regions, 

heat is a resource that potentially drives migration.  Both endotherms and ectotherms may 

need to respond to the availability of heat that is distributed unequally across habitats, both 

spatially and temporally [e.g. reptiles (Huey 1991), birds (Barnagaud et al. 2013), mammals 

(Wiemers et al. 2014), gastropods (Bates et al. 2005)].  Ectotherms occupying relatively 

harsh or variable environments may need to be particularly responsive to the thermal 

properties of landscapes in order to complete basic life histories.  Thus, there is consensus 

that a prominent factor in habitat selection by ectotherms is temperature (Huey 1991, 

Diaz 1997, Blouin-Demers and Weatherhead 2001), although this relationship has been 

primarily studied on a fine-scale (Brown et al. 1982, Diaz 1997, Harvey and 

Weatherhead 2006, Row and Blouin-Demers 2006).  The role of large-scale thermal 

properties of landscapes on seasonal migration patterns remains largely unexplored. 

In temperate regions, reptiles at their northern range extents may experience 

challenging thermal conditions, allowing large-scale thermoregulatory behaviours to evolve. 

Reptiles that occur in areas with cooler climates may be dependent on specific hibernation 

sites, and during the short active season may have limited time to fulfill basic life history 

requirements. The scales at which reptiles respond to these challenges are unknown. While 

thermal microclimate selection may enable reptiles to use any habitat(s) encountered, large 

scale thermal habitat properties may play a role. 
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In British Columbia, extensive annual movements (e.g., up to several kilometres) 

away from the overwinter hibernacula have been documented for Western Rattlesnakes, 

Crotalus oreganus (Macartney 1985, Charland et al. 1993, Bertram et al. 2001, Hobbs 2007, 

Brown et al. 2009, Gomez et al. 2015).  The driving mechanisms for these summer 

migrations remain unclear. Access to food and/or avoidance of conspecifics during the 

foraging period may be responsible, as may be access to mates later in the summer [mating 

takes place away from the hibernaculum, unlike that in northern denning populations of 

garter snakes (Gregory 2009)].  Thermal resource selection may be at least partially dictating 

these seasonal movements, both for thermoregulatory advantage and because mountainous 

terrain and a relatively cool climate create a matrix of thermal patches within which the 

snakes must operate. 

Thermal selection at the landscape level may help explain departures from traditional 

habitat associations recently detected for these rattlesnakes. In British Columbia, this animal 

has been generally associated with grassland ecosystems and open Ponderosa pine forests 

(Matsuda et al. 2006), but recent work by Gomez et al. (2015) has documented at least one 

departure from the stereotypic association between rattlesnakes and grassland habitats in this 

region.  In that study, rattlesnakes from one population were documented travelling to 

higher-elevation forests (Douglas-fir) as opposed to staying in ‘traditional’ lower-elevation 

grasslands habitat and mid-elevation Ponderosa pine open-forest. 

Differences in movements and habitat use between denning populations may be 

caused in part by temperature selection at the landscape level. Thermal characteristics on the 

ground will be influenced by the incident solar radiation (Iqbal 1983) that, in turn, is 

influenced by the substrate ruggedness, day length, topographical shadows, and solar azimuth 

at the given latitude.  On an annual time scale, seasonal and daily variation in these dynamics 

likely do not cause major changes in vegetation communities used by ecologists to delineate 

‘habitats’; however, they may provide significantly different resources, from a snake’s point 

of view, at different points in the season and across a heterogeneous landscape. Over the 

course of the active season, the average thermal properties of the landscape may influence 

migratory and large-scale movement patterns.  If snake movements could be linked to the 

thermal attributes of the landscapes, it would provide powerful new insight into how the 
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migration ecology of these animals may be influenced. Being able to predict such movements 

also would be an important conservation tool.  

Geographic Information Systems (GIS) allows habitat use and animal movements to 

be examined on increasingly larger scales (Erickson et al. 1998). Use of pre-existing digital 

maps, such as those containing ecological zones, combined with the use of algorithms, like a 

solar radiation calculator, enables one to extrapolate the result of empirical research over a 

much larger and potentially heterogeneous spatial scale, such as the range of a species. Solar 

insolation has been used to predict hibernacula locations (Hamilton and Nowak 2009), but to 

date it has not been applied to investigate snake summer habitat use. 

The goal of this chapter is two-fold. First, I use telemetry to monitor the seasonal 

migration of snakes from a larger sample of hibernacula than in the Gomez et al. (2015) 

study. From the resulting data, I demonstrate the dichotomy of habitat use more clearly.  This 

allows me to use GIS to examine the role that thermal attributes of the landscape may play in 

large-scale habitat selection by these animals. My working hypothesis is that snakes select 

warmer areas within the available habitat (‘landscape’) to gain thermoregulatory benefits 

over the course of the northern summer. Thus, I examine whether thermal properties, like 

other long-term resource distributions, are correlated with habitat use by animals. 

METHODS 

Study animal and site selection 

This study was conducted in 2010 and 2011 in the Thompson-Nicola (50.8°N, 

120.6°W) and Okanagan-Similkameen (49.3°N, 119.6°W) regions of British Columbia, 

Canada.  This area encompassed nearly the entire range of the Western Rattlesnake in the 

province. Study hibernacula were selected to ensure a diversity of thermal conditions was 

present across the landscape surrounding the hibernacula.  This was done using preliminary 

thermal maps of the area created with GIS (see Mapping and Analysis for details).  

Considerations also were made for logistics, land ownership and access.  Hibernacula only 

were considered for the study if the estimated population was more than 12 rattlesnakes (BC 

Conservation Data Centre 2009). This was to reduce the likelihood that the study would 
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impact the viability of the population. In total, ten hibernacula were chosen for study – six in 

the Thompson-Nicola region (6 in 2010, and 1 in 2011) and 4 in the Okanagan-Similkameen 

region (in 2011) (see Chapter 1, Figure 1.3). 

Seventeen snakes from 6 hibernacula were selected for inclusion in the study in 2010, 

and 18 snakes from 5 hibernacula were selected in 2011. I targeted at least three snakes from 

each hibernaculum in order to provide replication. However, at 2 sites only 1 and 2 snakes 

were found to be suitable for inclusion in the study. At the remaining 9 sites, either 3 or 4 

snakes were selected as study animals. 

Animal capture, processing, selection and surgery 

I visited each targeted hibernacula repeatedly (i.e., at least twice) during the spring 

emergence period (April 15 – May 7).  During this time, any rattlesnakes encountered were 

captured using snake tongs and placed temporarily in a collapsible mesh laundry basket. 

Snakes were weighed individually in a canvas bag. Snakes within the target weight range for 

telemetry (i.e., heavier than 400g) then were ushered individually into a plexiglass tube for 

sex determination via hemipenal probing (Schaefer 1934). I selected only male snakes for 

radio-telemetry as female rattlesnakes are known to adjust their migratory behaviour 

according to the timing of their individual reproductive cycle (Macartney and Gregory 1988). 

While in the plexiglass tube, snakes were injected with sterile Passive Integrative 

Transponder (PIT) tags for permanent identification. The tag was inserted subcutaneously in 

the posterior 1/3 of the animals’ body using a plastic syringe-style implanter. The use of PIT 

tags has been successful in snake mark-recapture studies and has been reported to have 

minimal negative effects on the animals (Jemison et al. 1995). To enable quick identification 

of individual snakes in the field, including those not involved in the telemetry study, I also 

marked the snakes with a unique colour pattern on sides of their rattle using commercial nail 

polish. Animals selected for telemetry were transported by vehicle to a veterinary clinic in a 

towel-lined, aerated rubber container. 
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Radio-telemetry 

Each study animal was surgically implanted with an SB-2 radio-transmitter (Holohil 

Systems Inc., Ontario, Canada), weighing 3.8 - 5.2 grams. No implant package exceeded 

2.7% of the snake’s weight and transmitter lifespans ranged from 5-10 months. Surgeries 

were carried out by veterinarians following the protocols described by Reinert and 

Cundall (1982) with modifications by Reinert (1992). The implanted snakes were held for 

approximately 24-48 hours post-operation to permit recovery from sedation and allow 

adequate rehydration.  Each animal was then released at its exact point of capture. 

Transmitters were removed from re-captured snakes either when they returned to their 

hibernacula in autumn of the same year, or as they emerged from hibernation the following 

spring. 

I tracked and located telemetered snakes every 3 to 7 days between emergence 

(April/May) and egress (September/October) using an R-1000 telemetry receiver and 

RA-159 handheld Yagi directional antenna. When each snake was located, I recorded date, 

time, UTM coordinates using a handheld GPS unit (Garmin, GPS 76Cx), canopy closure 

using a spherical crown densitometer (Forestry Suppliers, Convex model A), and habitat type 

(see below).  

Mapping and analysis 

Snake location data were filtered to include only those that constituted independent 

movements, defined as more than 10 m from the previous location (Gomez et al. 2015). Each 

location was assigned to one of two habitat types to enable comparison: those with <10% 

canopy closure (bunchgrass and open-canopy Ponderosa Pine) were designated as “Open” 

habitats, while locations with >10% canopy closure (Interior Douglas-fir forests) were 

classified as “Forest” habitat. Additionally, each snake was later assigned a category based 

on the type of habitat reached at the end point of the snakes’ migration, the ‘Destination 

habitat’. This classification of habitats allowed comparison between snakes using typical 

(open grassland) habitats and atypical (forested) habitats.  
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Annual migration paths were created for each individual snake by connecting 

locations. The maximum straight-line distance travelled by each snake was calculated using 

the furthest detected location from each animal’s hibernaculum. Outgoing migration was 

defined as the snakes’ movements up to the most distant point (i.e. the snake’s ‘turn-around’ 

point); homeward migration constituted those movements that brought the animal back to its 

hibernaculum. Home ranges were measured using mean minimum convex polygons (MCP), 

which has been suggested to be suitable for home range estimation in herptofauna 

(DeGregorio et al. 2011, Row and Blouin-Demers 2006).  

I created a thermal model of the landscape surrounding each hibernaculum, using 

solar insolation as a proxy for temperature. Thus, these maps did not show the actual 

temperatures a snake would experience in any given year, but the general topographic 

patterns in temperature expected across the landscape. Incident solar radiation simulations 

were run using the Area Solar Radiation tool in the Spatial Analyst extension in ArcGIS 9.3 

(Environmental Systems Research Institute 2009). The simulation was based on a 25 m 

digital elevation model (DEM). The algorithm used by the tool uses slope, aspect, elevation, 

day length, latitude and solar azimuth to calculate the expected incident solar radiation at a 

given point on the landscape. The parameters used in the simulation included a sky size of 

512 and a 14-day interval. The resulting landscape simulation was composed of raster images 

built on the predicted incident solar radiation for a cell size (pixel) of 25 m2, with the thermal 

values being expressed in average daily Watt-hours per square meter (Wh/m2).  

After the landscape models had been constructed, I compared the thermal properties 

of the snakes’ migratory movements to those theoretically available on the landscape. To 

start, the migration of each snake was divided into two major stages. The Outgoing migration 

captured the movements of the snake from the hibernaculum to its furthest point of 

displacement from the hibernaculum, and the Homeward migration or the return trip from the 

turn-around location to the hibernaculum. As snakes tend to use similar return paths back to 

the hibernaculum during the Homeward migration, the analyses were limited to the Outgoing 

migration. The Outgoing migration was further divided into an Initial stage and a Late stage, 

summarizing the movements of each snake in May/June and July/August respectively. I 

created three thermal metrics representing different aspects of the outgoing annual 
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movements of the animals. The thermal metrics were calculated by averaging the incident 

solar radiation values for all pixels of the thermal landscape crossed by the migration path.  

To create a set of random walk pathways to simulate the ‘available’ outgoing 

migration paths for each snake, I used Hawth’s tools (Beyer 2004) to generate 100 random 

walks originating at the hibernaculum. The actual movements of each snake were used to 

parameterize the random walks generated for that particular snake and landscape. Random 

walks were restricted in length to the maximum distance measured from the hibernaculum 

during the study, using an average turn angle equal to that measured in the field.  For each of 

the 100 simulated random walks, I then calculated the three thermal metrics using the same 

procedure as described above for the outgoing migration pathway.  

I compared the empirical thermal metrics for the telemetered snakes against the 

simulation distributions in three ways.  Firstly, I determined what proportion of the empirical 

measurements fell within the top 50% of the 100 simulations (respective to each snake).  I 

tested gross differences in these frequencies between snakes using forest destination habitat 

and snakes using open habitats, using F2 analysis (Ho: 50% of empirical observations will fall 

into the top half of the 100 simulations). Secondly, I determined the actual percentile value of 

each empirical thermal metric in relation to the 100 simulated values.  I then compared these 

percentiles between the two categories of snakes using t-tests. Finally, I used Z-tests 

(Zar 1999) to determine the probability of selecting each empirical thermal measurement 

from the simulated distributions, respectively; I present the 𝑥 and SD values for these metrics 

for each of the two categories of snakes, and once again use t-tests to test for the significance 

of the differences. These three analyses were repeated for each of the three stages of snake 

migration (Outgoing, Initial, and Late). Normality of the data were confirmed in all cases 

prior to analyses. 

To coarsely depict the landscape surrounding each hibernaculum, I calculated a 

ruggedness index. A ruggedness value was calculated for each pixel (25 x 25 m) on the 

landscape using Relative Topographic position and the raster calculator tool in ArcGIS 9.3 

(Environmental Systems Research Institute 2009). The topographic position of each pixel 

was identified with respect to its surrounding pixels (Jenness 2004, Riley et al. 1999). The 

average value of these pixels for each of the snakes’ outgoing migration paths was then 
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determined. In addition, the average value of these pixels for an area with a radius of 4000 m 

surrounding each hibernaculum (determined based the maximum distance travelled by the 

snakes in this study) was then calculated, resulting in an average ruggedness value for each 

study hibernacula. 

To determine the relationship between habitat ruggedness, thermal landscape 

characteristics, and habitat use, I examined the data in two ways. First, I examined the 

relationship between Destination habitat type and ruggedness index using a t-test, in a similar 

manner to the comparison between thermal migration path percentiles and the two categories 

of snakes. Next, I used a linear regression to examine the relationship between ruggedness 

index and percentile (as the dependent variable) in all three categories of migration. 

Statistical considerations 

All statistical analyses were performed in the program R version 2.12.1 (R 

Development Core Team 2011).  Data were tested for normality by examination of 

histograms and using the Shapiro-Wilk test or the Kolmogorov-Smirnov test (Zar 1999). 

Homogeneity of variances between groups was tested using the Fligner-Killeen test 

(Conover et al. 1981, Crawley 2007). Percentage data were transformed using an arcsine 

transformation for analysis.  A significance value of α=0.05 was used to guide the 

interpretation of the results. Means are reported ± 1 standard deviation, unless otherwise 

stated. 

RESULTS 

In total, I used 35 snakes for radio-telemetry study. Morphology data of the 

telemetered animals, including length and weight, are detailed in Appendix A.  

Twenty-nine of 35 telemetered snakes were tracked through their entire annual 

migration. Six snakes did not have their entire migration route completely documented.  One 

snake could not be located between June and August, and only partial data and no turn-

around point were obtained, so the snake was excluded from the migration analysis.  Five 

snakes were predated upon in May and June, prior to reaching their migratory turn-around 
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point. The transmitters of three of these snakes (all from the same hibernaculum) were 

recovered from an active red-tailed hawk (Buteo jamaicensis) nest. The transmitters from the 

other two snake mortalities also were recovered, but the deaths could not be linked to a 

specific predator. These snakes were not considered in the analysis due to incomplete data 

sets. One snake was predated upon in August, approximately 300 m from its hibernaculum 

during the return migration. As the snake had clearly reached its turn-around point, the data 

from this animal were included in the analysis as if the entire migration had been completed. 

In total, the migration data from 30 snakes were included in the analysis. 

As expected, the snakes travelled away from the hibernaculum to summer habitats 

(Outgoing migration), reaching their most distant point from the hibernaculum on an average 

date of August 8 (with a range from June 23 to September 21).  Snakes then returned to the 

hibernaculum (Homeward migration); most utilized the same approximate path back to the 

hibernaculum.  

The mean maximum straight-line distance measured from the hibernaculum to the 

‘turn-around’ point for the telemetered snakes was 1847.8 m ± 930.0 m (n=30, 

range=373.0 m to 3985.7 m). The mean MCP home range size observed for the tracked 

snakes was 52 ha ± 47.9 ha (n=30, range=1.5 ha to 194.7 ha). The mean migration metrics 

are presented in Table 2.1. No relationship between migration distance and home range size 

was observed (Figure 2.1). There were no significant differences observed between straight-

line migration distances or home range sizes between the Thompson-Nicola and Okanagan-

Similkameen regions [migration (t26=1.42, P=0.170); home range (t24=-0.36, P=0.720)].  

All study hibernacula (and thus the starting points of all monitored migrations) were 

located in open habitats. From these sites, the mean distance to forest habitat was 656 m 

(± 958 m). Fifteen of the 30 snakes, henceforth termed ‘Forest snakes’, travelled to and used 

forests as a Destination habitat (i.e., in the latter part of their outgoing migrations during July 

and August), while the use of open habitats through the entire migration was observed in the 

other 15 study snakes (henceforth termed ‘Open-Habitat snakes’ - see Table 2.1). Maximum 

straight-line distances reached from the hibernaculum were significantly longer for Forest 
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Figure 2.1. Relationship (R2=0.51) between maximum straight-line distance travelled from 
the den to the furthest point of the migration and minimum convex polygon (MCP) home 
range size of Western Rattlesnakes in British Columbia.  Forest snakes are represented by 
solid markers, Open-Habitat snakes are represented by open markers. 
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snakes (2359 m ± 837.0 m; t27=3.57, P=0.001), than Open-Habitat snakes for the entire 

season (1337 m ± 729.0 m). Additionally, MCP home range sizes for the entire season were 

larger for Forest snakes (69.3 ha ± 40.9 ha; t27=2.07, P=0.047), than Open-Habitat snakes 

(35.0 ha ± 49.4 ha). 

Due to my sample size of snakes at each study site (<4 from the majority of the study 

hibernacula), statistical analysis of migration directionality by the snakes from each 

hibernaculum was not possible.  I therefore used a less-rigorous approach by classifying 

migrations from a particular hibernaculum as directional when the telemetered snakes 

leaving that hibernaculum displayed mean migration bearings within 40º of one another 

(Table 2.1). Within-hibernaculum groups of snakes whose migration bearings were more 

than 40º from one another were considered to have a random distribution. This distinction 

was made based on a natural break in the data and qualitative judgement of snakes’ travel 

directions. 

The snakes’ movement paths over the simulated thermal landscape are shown in 

Figure 2.2 and 2.3. The empirical thermal metrics of the Forest snakes tended to occur in the 

upper half of the distribution of simulated migration paths significantly more often than 

Open-Habitat snakes, in all three categories of the migration (Outgoing, Initial and Late 

stages; see Figure 2.4, Table 2.2 A). 

In all three categories of the migration (Outgoing, Initial, Late) the empirical thermal 

values derived from the migratory pathways of the Forest snakes were significantly higher 

than the same values for the Open-Habitat snakes, as compared to their respective simulated 

movements (Table 2.2 B).  These differences were most noticeable during the Late stage of 

migration, when the thermal values of the empirical (observed) pathways for Forest snakes 

averaged near the 80th percentile, compared to a 50th percentile average for the snakes that 

remained in open habitats. In fact, the thermal values for the Open-Habitat snake migrations 

averaged close to 50th percentile scores in all three of the migration categories (Table 2.2 B, 

Figure 2.4.). 
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The average probability values (from z-test scores) as determined for the Outgoing 

portion of the migration were significantly lower for Forest snakes than Open-Habitat snake 

(Table 2.2 C). Very similar comparisons were seen for the Initial and Late stages of the 

migration (Table 2.2 C).    

The ruggedness index values for migration paths were significantly higher for Forest 

snakes (x̄=77.7 ± 23.0; t22=3.09, P=0.005) than for Open-Habitat snakes (x̄=56.6 ± 13.2). A 

significant effect of ruggedness was found for the percentile score of the empirical migration-

path values for the Late migration category (F1,28=4.31, P=0.047; R2=0.13), but not for either 

the Outgoing migration (F1,28=4.05, P=0.054; R2=0.13) or Initial migration stages (F1,28=2.97, 

P=0.095; R2=0.09; Figure 2.5). Rattlesnake hibernacula with higher average ruggedness 

values were more likely produce snakes that migrated to forest habitat (t25=3.99, P=<0.001). 

DISCUSSION 

Overall, the results of my study indicate that the annual migrations of these northern 

snakes are dictated, at least in part, by thermal attributes of landscapes at a relatively large 

scale.  For ectotherms occurring at a high latitude, this in itself is intuitive, but what is more 

interesting is the fact the animals appear to travel relatively longer distances to access this 

habitat, and their movements take them out of the lower arid grassland valleys that might 

have been predicted to afford better summer habitat.  This pattern was also not universal: 

exactly half of the animals I followed undertook the longer migrations into the higher-

elevation forests, and slightly greater than half of the animals travelled into relatively warmer 

areas on the landscape.  Thus, the thermal parameters I examined in this study do not fully 

explain the dichotomy of movements exhibited by snakes in this and previous study 

(Gomez et al. 2015), but they do shed light on the factors influencing migration patterns in 

northern herpetofauna. 

Use of forest habitat by rattlesnakes is well-documented, but in locations considerably 

further south than my study location (Parker and Anderson 2007, Waldron et al. 2006,  
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Figure 2.2. Examples of Western Rattlesnake migrations from the hibernaculum to 
destination habitat. Study hibernaculum is represented by ¶, and different snake 
movements are represented by different coloured symbols and connecting lines. In this 
example, all telemetered snakes utilized forest habitat. 7he thermal landscape iV�UHSUHVHnWHG�
using modelled average incident solar radiation as a proxy for temperature. Telemetered 
snakes in this examples used warmer areas of the thermal landscape.  

Average Incident 
Solar Radiation 
(Wh/m2)
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Figure 2.3. Examples of Western Rattlesnake migrations from the hibernaculum to 
destination habitat. Study hibernaculum is represented by ¶, and different snake movements 
are represented by different coloured symbols and connecting lines. In this example, all 
telemetered snakes utilized open habitat. 7he thermal landscape iV�UHSUHVHnWHG�using 
modelled average incident solar radiation as a proxy for temperature. Telemetered snakes in 
this examples used neutral areas of the thermal landscape.  

Average Incident 
Solar Radiation 
(Wh/m2)
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Figure 2.4. Comparison of the thermal metrics of snakes’ migration paths to simulated 
migration paths for snakes reaching either forest or open destination habitats. The ○ symbols 
represents the percentile of individual snakes within each group; the × symbols represents the 
mean percentile for the group ± 1 standard deviation.  
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Table 2.2 Comparisons of empirical thermal metrics to the thermal metrics derived from 100 
random-walk migration path simulations for Western Rattlesnakes in British Columbia. 
Using thermal landscape maps, both empirical thermal metrics and those of the simulated 
migrations were derived from the average incident solar radiation along the migration path 
for each migration category (Outgoing, Initial and Late stages). Forest snakes utilized 
forested habitats as the destination for their migration, while Open-Habitat snakes remained 
in sparsely-treed or open grasslands throughout the active season.  

Comparison Group 
Outgoing 
Migration Initial Stage Late Stage 

A. Proportion of snakes 
occurring in the upper half 
of the distribution of the 
simulated migration paths 

Forest snakes 13/15 11/15 14/15 

Open–Habitat 
snakes 8/15 5/15 8/15 

 χ2=3.97, df=1, 
P=0.046 

χ2=4.82, df=1, 
P=0.028 

χ2=6.14, df=1, 
P=0.013 

B. Average percentile 
scores of migration path 
values within values 
derived from the simulated 
migration paths 

Forest snakes 76.6 ± 25.4 68.5 ± 28.7 79.3 ± 18.8 

Open–Habitat 
snakes 51.1 ± 22.0 43.7 ± 18.0 50.2 ± 26.1 

 t27=2.95, 
P=0.006 

t21=3.03, 
P=0.006 

t28=3.46, 
P=0.002 

C. Average probabilities 
(as determined by z-test 
scores) of migration path 
values as tested against a 
distribution of values 
derived from the simulated 
migration paths 

Forest snakes 0.24 ± 0.28  0.29 ± 0.26 0.25 ± 0.26 

Open–Habitat 
snakes 0.54 ± 0.30 0.68 ± 0.20 0.55 ± 0.27  

 t28=-2.66, 
P=0.013 

t26=-4.65, 
P<0.001 

t28=-3.17, 
P=0.004 

 
  



35 

 
 
 

 

Figure 2.5 Average percentile scores of migration path values within values derived from 100 
random-walk simulations, for each category of migration, compared to migration path 
ruggedness for telemetered Western Rattlesnakes in British Columbia. Trend lines (shown) 
were fit for the pooled group of snakes during the entire Outgoing migration (R2=0.13), the 
Initial migration (R2=0.09) and the Late stage of migration (R2=0.13). Forest snakes are 
represented by solid markers, Open-Habitat snakes are represented by open markers.  
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Weatherhead and Prior 1992).  Similarly, long-distance movements have also been reported 

elsewhere (Bauder et al. 2015, Duvall and Schuett  1997, Jorgensen 2009) and within the 

same region of my study (Gomez et al. 2015).  Long-distance migratory movements for 

northern snakes in general have often been hypothesized to reflect widely-separated 

resources, such as hibernacula and summer foraging sites.  In my study, the mean migration 

distances and home range sizes for this study were similar to those previously reported in this 

region; however, several of the maximum distances recorded in this study were longer than 

those previously reported (Bertram et al. 2001, Charland et al. 1993, Gomez et al. 2015, 

Macartney 1985). The prevalence of forest habitat use [first detected by Gomez et al. (2015) 

and now well-demonstrated by my study] is somewhat unexpected, given the presumption 

that the animals at their northern limits should be strongly tied to the arid, open grassland 

habitat of the valley bottoms. 

My analysis explains some of the patterns of summer habitat use by these animals.  

The variable terrain of British Columbia coincides with the northern limit of the species, 

providing energetic and thermoregulatory challenges for the animals and raising the benefits 

of using habitat with optimal thermal attributes.  In particular, the thermal landscape 

properties of the outgoing migration as a whole and the late stage of migration differed the 

most from the simulated random walks. During this time, most of the snakes travelled along 

warmer pathways, and snakes heading to or occupying forest habitats tended towards warmer 

pathways. Snakes appeared to move through less thermally-suitable conditions to reach 

destination habitats with ideal thermal properties, as evidenced by fewer snakes travelling 

warmer pathways during the initial migration stage. The consequences of using cooler paths 

are not known; however, it is likely that snakes perform microhabitat selection to compensate 

for temperature changes (Brown et al. 1982, Gannon and Secoy 1985, Wills and Beaupre 

2000, Shoemaker and Gibbs 2010). This aspect of the ecology of snakes in the different 

habitats is discussed further in Chapter 3. 

Rattlesnakes migrating through landscapes with higher ruggedness (more elevation 

variation in the terrain) were more likely to use forested habitats and had higher migration 

path percentiles during the late stage of migration. Although this relationship was significant, 

the amount of variation actually explained by ruggedness (R2 value) was low.  Nonetheless, 



37 

 

ruggedness has been included as an important attribute in habitat selection for a variety of 

wildlife including caribou (Nellemann and Fry 1995), big horn sheep 

(Sappington et al. 2007), badger (Apps et al. 2002) and grouse (Carpenter et al. 2010), and 

my data support the assertion that this metric should be considered an important influence in 

snake habitat use (Fitzgerald et al. 2005, Greenberg and McClintock 2008), at least in 

northerly areas with noticeable variation in topography. 

Thermal patterns of the landscape (as I measured them) appeared to be influencing 

the migrations observed in my study; however, there may be additional factors dictating 

migration routes that work in combination or separate from thermal attributes of the 

landscape. Animals may migrate in search of resources such as prey, mates or suitable habitat 

conditions, such as habitat type. Several studies have linked altered spatial behaviours to prey 

availability (Duvall et al. 1990, Wasko and Sasa 2012), whereas others have indicated limited 

support for this effect (Taylor et al. 2005, Nowak et al. 2015). In Wyoming, movement of 

male rattlesnakes has been attributed to mate-searching (Duvall and Schuett 1997). There is, 

however, insufficient knowledge to extrapolate these effects to other locations, such as in my 

northern study site.  While my results indicate that there may be thermal influences on snake 

movements, investigation of other factors and the relationships between the putative driving 

factors is warranted. 

As with all ecological models, thermal landscape simulations are simplistic 

representations of complex systems. The thermal models developed in this study provided 

insight into the role that thermal attributes of the landscape play in rattlesnake habitat use 

during the active season; however, they may be constrained by a spatial database resolution 

of only 25x25 m pixels. As the thermal landscape used in the analysis is based on this 

resolution, any variation occurring below this scale is not captured. A higher resolution 

digital elevation model, perhaps 3x3 m, in concert with a ground-cover mapping layer such 

as LIDAR, could be used to examine landscape dynamics through a finer lens.  Small-scale 

thermal habitat features, including these small local variations, are discussed in Chapter 3.  

The results of this study demonstrate that the relationship between hibernaculum 

location, migration distance and direction, and summer habitat utilization for these animals is 

far more complex than initially suspected.  This is particularly important given that our 
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understanding of northern rattlesnake ecology has been largely based on one study 

(Macartney 1985) where detailed information was collected on a population of snakes 

apparently restricted to open habitat.  Clearly, widespread migratory differences exist 

between hibernating populations of these animals, and possibly other species. Realization of 

dichotomous habitat use, and revisiting the definition of “typical” habitats, is important in 

improving our understanding of the ecology and migration of animals (Diggins et al. 2015, 

Robson 2013).  

Although the thermal attributes of the landscape appear to influence the migratory 

patterns of rattlesnakes in this study, this does not occur in an overwhelming manner that 

allows for precise predictions.  Still, this work provides important clues as to the factors 

dictating snake movements from hibernacula. On a landscape scale, snakes use habitats that 

provide a thermal advantage through the short, northern summer. The role of thermal 

landscape attributes in colder environments, and how they affect migratory pathways of 

animals, warrants consideration along with other resource values in assessing habitat. 
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CHAPTER 3. THERMOREGULATORY COSTS OF HABITAT USE:  DO WESTERN 

RATTLESNAKES USING DIFFERENT HABITAT TYPES BEHAVE DIFFERENTLY? 

INTRODUCTION 

Organisms that thermoregulate have developed diverse strategies to maintain their 

body temperatures at optimal levels. These strategies include physiological mechanisms for 

temperature control and/or behavioural tactics, either of which may be employed to varying 

degrees. Behavioural thermoregulation has both ecological benefits and costs (Shoemaker 

and Gibbs 2010); for example, shifting positions to maintain optimal body temperatures 

(Gannon and Secoy 1985, Huey et al. 1989, Webb and Shine 1998) will be worthwhile for an 

animal only if the benefits outweigh the costs (Huey and Slatkin 1976). At the same time, 

thermoregulation may take time away from other tasks that contribute to fitness, such as 

mating success and feeding (Blouin-Demers and Weatherhead 2001, Dunham et al. 1989). 

Therefore, different thermoregulatory behaviours and relative degrees of active 

thermoregulation may impact fitness, underscoring the importance of different 

thermoregulatory tactics and their consequences on species of concern.  

Thermoregulation may be considered a form of ‘resource utilization’ (Huey 1991) 

and the variable availability of heat as a resource across different habitats likely will have 

repercussions. In other words, varying thermal environments may impart costs and benefits 

to animals (van Beest et al. 2012). One example of this is the apparent contrasts in thermal 

resources between neighbouring forested and open habitats.  A closed forest canopy should 

provide both insulation (heat retention at night) and shade (providing lower temperatures 

during the day) (Chen et al. 1999, Demarchi and Bunnell 1993, Ferrez et al. 2011). 

Subsequently, these sorts of habitat should demonstrate less temperature variation over 24 

hours than adjacent habitats with little to no canopy cover.  This relationship should be more 

pronounced in temperate systems, where general climatic patterns tend to relatively warmer 

days and cooler nights for much of the year.  The dynamics between these and other 

contrasting habitats will be important in understanding habitat selection and its 

consequences, particularly so for ecthothermic species that are more reliant on external 

temperatures (Gotthard 2001). 
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Snakes in temperate regions appear to be a group of animals where the thermal 

consequences of habitat use are pronounced.  In some cases, forests habitats have been 

considered lower thermal quality than open habitats (Blouin-Demers and Weatherhead 2001, 

Row and Blouin-Demers 2006, Harvey and Weatherhead 2011). Other studies have 

suggested that forest edges and openings may be of higher quality (Blouin-Demers and 

Weatherhead 2002).  Intuitively, the ramifications of different habitat selection and thermal 

regimes should be best demonstrated in situations where conspecifics within the same 

regional population show marked differences in habitat selection.  This occurs near the 

northern limits of rattlesnakes in North America, where Western Rattlesnakes, Crotalus 

oreganus, from neighbouring hibernacula show notable differences in summer habitat use. 

The stereotypic association of these snakes within the hot, dry grasslands has been shown to 

be inaccurate.  Both Gomez (2015) and my data in Chapter 2 indicate that adult animals in 

some populations conduct summer migrations that place them in high-elevation forested 

habitat, whereas conspecifics emerging from other dens in the same region remain within the 

lower grasslands throughout the active season.  Additionally, I showed in Chapter 2 that 

snakes, predominantly those using forested habitat, used warmer areas of the landscape 

during their annual migrations.  

In this chapter, I investigate further the thermoregulatory implications of dichotomous 

migratory movements by Western Rattlesnakes.  I explore the ramifications of the patterns in 

habitat selection observed in Chapter 2 by testing whether animals using forested habitat 

displayed higher body condition, similar to that reported by Lomas et al. (2015) for Western 

Rattlesnakes leaving areas of high human development. If such benefits are realized, it will 

partially explain the phenomenon of long distance migration into forest habitat described in 

Chapter 2. Additionally, I investigate whether snakes migrating into forest habitats display 

different thermoregulatory profiles and behaviours than those in open, grassland habitats. 

Given that forest habitat should provide less-extreme temperature dynamics, I hypothesized 

that snakes using these habitats would demonstrate different behavioural tactics relative to 

conspecifics in hotter, open habitats, while still allowing animals in forests to achieve 

optimal body temperatures over the course of 24 hour periods.  
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METHODS 

Study animal and site selection  

 
Rattlesnakes used in this study were involved in a larger study of the relationship 

between thermal landscape characteristics and migratory pathways (Chapter 2). Work took 

place in 2010 and 2011 on snakes emerging from 10 dens selected from known hibernating 

sites (see Chapter 1, Figure 1.3).  The dens were selected based on logistics, the range of 

habitat (i.e., availability of forest habitat) within a 5 km radius, and an estimated population 

of at least 12 adult animals to minimize impacts on the population. Only adult male snakes 

were selected for telemetry to avoid negative effects on reproductive females.  Seventeen 

snakes from 6 dens were selected for incusion in the study in 2010, and 18 snakes from 5 

dens were selected in 2011.  Three snakes from each den were targeted for telemetry in order 

to ensure adequate replication; however, at 2 sites only 1 and 2 captured snakes respectively 

were deemed large enough for telemetric study.  At the remaining 9 sites, either 3 or 4 snakes 

were selected as study animals.   

The study animals were surgically implanted with SB-2 radio-transmitters (Holohil 

Systems Inc., Ontario, Canada), weighing 3.8 - 5.2 grams, and a temperature data-logger 

(www.maxim-ic.com; DS1921G Thermocron iButton™), weighing approximately 3.3 g.  

The implanted iButtons™ were coated in Plastidip, an inert plastic that protects the 

instrument from moisture and the snakes from any harmful effects of corrosion. The 

iButtons™ were programmed to take internal body temperatures (Tb) every 2 hours for the 

length of the active season. The combined weights of the two implanted devices never 

exceeded 2.7% of snakes’ body weight. Surgical protocols outlined by (Reinert and 

Cundall 1982) and Reinert (1992) were used. Following surgery and a 24-48 hr post-

operative recovery period, the snakes were released precisely at their point of capture. 

Implants similarly were removed from re-captured snakes either when they returned to their 

hibernacula in autumn of the same year, or as they emerged from hibernation the following 

spring. 
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I tracked and located telemetered snakes every 3 to 7 days between emergence 

(April/May) and egress (September/October) using an R-1000 telemetry receiver and 

RA-159 handheld Yagi directional antenna. When each snake was located, I recorded date, 

time, UTM coordinates, weather, habitat description, canopy closure using a spherical crown 

densiometer (Forestry Suppliers, Convex model A), temperature measurements and snake 

behaviour.  

Snake location data were filtered to include only those that constituted independent 

movements, defined as more than 10 m from the previous location (Gomez et al. 2015). Each 

location was assigned to one of two habitat types (‘Location habitat’) to enable comparison: 

those with <10% canopy closure (bunchgrass and open-canopy Ponderosa Pine zones) were 

designated as “Open” habitats, while locations with >10% canopy closure (Interior Douglas-

fir forests) were classified as “Forest” habitat. Additionally, each snake was assigned post 

hoc to a category (“Open-Habitat snakes” or “Forest snakes”) based on the type of habitat 

reached at the end point of the snakes’ migration (‘Destination habitat’).  

Body weight, length and condition 

Weights of animals were collected at the point of capture (in spring during selection 

for telemetry, and in fall when animals were being recovered for transmitter removal).  The 

lengths of each snake (SVL, snout-to-vent length) were measured while animals were under 

anesthesia to avoid error associated with measuring venomous snakes in the field (Bertram 

and Larsen 2004). These data allowed me to calculate body condition (weight:SVL ratio) and 

percent weight change over the active season. The weight:SVL ratios were arcsine-

transformed and then compared between snakes using the two Destination habitat types using 

ANOVA with habitat and year as treatments. Using a similar methodology to that of 

Lomas et al. (2015), I used the residuals from the regression between weight and SVL as an 

index of body condition. Additionally, percentage weight change from spring to fall captures 

were arcsine-transformed and compared between Destination habitat types using t-tests. 
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Thermoregulatory behaviour 

Upon the sighting of a telemetered snake, the behaviour of the animal was recorded 

immediately unless inadvertent disturbance to the animal occurred, in which case the 

observation was omitted from the dataset. Three categories of thermoregulatory behaviour 

were designated: basking (motionless, 25-100% of the snake’s body exposed to the sky), 

active (including resting in the shade [>25% of the snake’s body exposed, but in an area 

shaded by vegetation or a tree], mating, and travelling), and under cover [<25% of the 

snake’s body exposed from the cover object (e.g., coarse woody debris) or retreat site (e.g., 

crevasse in rock)] (Figure 3.1). The mean relative frequency of each of the three behaviours 

was determined for each snake. Each snake was considered only once for each location 

habitat type (i.e., a forest snake was considered twice – once for its mean relative frequencies 

of behaviours in open habitats before reaching its Destination habitat, and once for its mean 

relative frequencies of behaviours in forest habitat when it had reached its Destination habitat 

type).  

The mean relative frequencies of the different thermoregulatory behaviours were 

arcsine transformed and compared between Location habitats using ANOVA, with individual 

snake as a treatment. 

Snake body temperatures 

Following retrieval and download of the surgically-implanted iButtons, I calculated 

the mean daily measured body temperatures for each snake.  ANOVA, including an 

interaction term, was used to examine mean daily body temperatures were compared between 

snakes using Open and Forest habitats, by month, and by year.  

Environmental temperatures 

Each time a telemetered snake was located, I collected environmental temperatures at 

both the snake’s location (‘used’) and at random points (‘available’).  Both ground-level air 

temperature and ground surface temperature, were measured using an infrared handheld 

thermometer (Testo 810).  Due of the importance of collecting precise temperature data at the 

snake’s exactly location, I often gently ushered the animal aside a short but safe distance.   
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Figure 3.1 Examples of snake daytime thermoregulatory behaviour, clockwise from top left: 
Basking - a snake is motionless and exposed to the sun; Active - the snake is not concealed 
and resting in the shade; Active - the snake is not concealed and engaged in feeding, mating 
or moving, or; Under cover- the snake is completely or partially under a cover object or in a 
retreat site (photos by author). 

.  
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Random temperatures were recorded at 8 points (4 at 1m radius and 4 at 5m radius, selected 

using randomly-chosen directions and a compass). Ground-level air temperature was 

measured horizontally at 10cm above ground, and ground surface temperature was measured 

by pointing the infrared thermometer directly at the surface immediately adjacent to the 

snakes’ position.  To further minimize error in measurements, the averages of 3 repeated 

measurements taken at each location and random location were used. Using the data set later 

retrieved from the implanted iButtons, I also determined the corresponding body temperature 

for each date and time of snake locations.  

A multi-factorial, repeated measures ANOVA was used to compare the differences 

between snakes’ body temperatures and the temperatures measured at the snakes’ locations. 

Factors included Location habitat, year, month, and time of day (morning, afternoon, 

evening). Month was the repeated measure. Similar tests were also performed to compare the 

temperatures at the snakes’ locations with those at random locations within the area 

surrounding the snake. 

Statistical considerations 

All analyses were performed in the statistical program R version 2.12.1 (R 

Development Core Team 2011). Data were tested for normality by examination of 

histograms and Shapiro-Wilk and/or Kolmogorov-Smirnov tests (Zar 1999). Homogeneity of 

variances between groups was tested using the Fligner-Killeen test (Conover et al. 1981, 

Crawley 2007). A significance value of α=0.05 was used to guide the interpretation of the 

results. Means herein are reported ± 1 standard deviation, unless otherwise stated. 

RESULTS 

Telemetered snakes 

Complete migratory data were collected on 30 of 35 telemetered snakes, with exactly 

half of those animals (n=15) reaching forested habitat. Overall, all snakes displayed typical 

directional movements, reaching their furthest point away from their respective dens in late 

summer (average August 8, range June 23 – Sep 21). Pathways used to return to the dens in 
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late summer and early fall tended to retrace the outgoing movement pathways (see 

Gomez et al. 2015). All 30 snakes were monitored over the course of their entire migration, 

except for one animal that was predated on approx. 300 m from reaching its den in autumn. 

The data from this animal were included in the final data set.  Partial data from the remaining 

five animals (all depredated) were used in some of the analyses for given stages of migration, 

but omitted from other analyses where more complete datasets were required. 

Snake body conditions 

I found a strong positive relationship between snake weight and length (Figure 3.2). 

This relationship was significant in both the spring (R2 = 0.78, F1,29 = 105.5, P < 0.001) and 

in the fall (R2 = 0.59, F1,28 = 38.78, P < 0.001). Forest snakes weighed relatively more for 

their length than their counterparts in open Destination habitats (Table 3.1) in both spring 

(F1,28 = 4.72, P = 0.04; year: F1,28 = 4.06, P = 0.06) and in fall (F1,26 = 8.56, P = 0.007; year: 

F1,26 = 0.20, P = 0.66). Analysis of the residuals shows that Forest snakes had significantly 

higher body condition indices than Open-Habitat snakes, in both spring (F1,28 = 8.11, 

P = 0.008; year: F1,28 = 0.73, P = 0.40) and in fall (F1,26 = 18.2, P = 0.0002; year: F1,26 = 0.10, 

P = 0.75). Of the telemetered animals, Forest snakes gained proportionally more weight over 

the active season than Open-Habitat snakes (F1,26=12.25, P=0.002, Table 3.1). Post-hoc 

analysis indicated that the sample sizes provided acceptable levels of statistical power 

(power=>0.999; Cohen 2013). 

Thermoregulatory behaviour 

A total of 383 behaviour observations were recorded at snake telemetry locations: 305 

observations were in open Location habitats, while 77 observations were in the forest 

Location habitat. The mean frequency observations of snakes being active (i.e., not basking 

or under cover) was significantly higher in forest Location habitat, while in open Location 

habitats, snakes were more frequently observed under cover in retreat sites or under cover 

objects (Table 3.2). The mean frequency of basking behaviour was not significantly different 

between snake locations within forest or open Location habitats. There were no differences 

detected within each Location habitat type (all Ps>0.05), meaning that Forest snakes behaved 
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the same as Open-Habitat snakes while in open grassland and open Ponderosa pine habitats 

before they reached their Destination habitat.  

Snake body temperatures 

Implanted iButtonsTM were recovered from 29 snakes, being lost from all of the 

predated animals. Of these, 16 were downloaded successfully without data failure or 

corruption. Nine of these iButtonsTM were from Forest snakes and 7 were from Open-habitat 

snakes. 

As the two groups of snakes, Forest and Open-Habitat, did not behave differently 

when in similar habitats, subsequent analyses focused on Location habitat type. ANOVA 

showed a significant effect on average daily body temperature by Location habitat category, 

month, year and the interaction (Location habitat: F1,648=7.11, P=0.008; month: F7,648=39.4, 

P=< 0.0001; year: F1,648=3.88, P=0.049; all interactions: all Ps=>0.05). In 2010, snakes in 

forest and open Location habitats did not have different average daily body temperatures, nor 

was the interaction term significant. Expectedly, there was a significant effect on average 

daily body temperature by month (F1,328=19.6, P=<0.0001). In 2011, there was a significant 

effect on average daily body temperature by Location habitat, month and the interaction term 

(Location habitat: F1,328=26.5, P=<0.0001; month: F6,328=38.9, P=< 0.0001; Location habitat 

X month: F6,328=8.78, P=<0.0001). The significance of Location habitat and the interaction 

term were a result of the daily average body temperature being higher in Open-habitat snakes 

than Forest snakes in the month of July (t30=10.7, P=<0.0001; see Figure 3.3). 

Environmental temperatures 

Overall, snakes’ relationship to the temperature of their surroundings did not differ 

between Location habitat categories (all Ps≥0.05; Table 3.3). The ANOVA revealed that 

Location habitat category did not have an effect on the difference between snakes’ body 

temperature and air or ground temperature at the snakes’ location (all Ps≥0.05). The same 

result was found for the comparisons between snake location temperatures and available 

location temperatures at 1 m and 5 m scales, for both air and ground temperature 

measurements (all Ps≥0.05).   
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Figure 3.2 Relationship between body weight and length (snout-vent length: SVL) of 
Western Rattlesnakes in British Columbia that used open and forested habitats using linear 
regression. Spring weight:SVL ratios are shown in in the upper chart and fall weight:SVL 
ratios are shown in the lower chart. Trend lines (shown) were fit for the pooled group of 
snakes in spring (dashed; R2=0.78) and in fall (solid; R2=0.59). Forest snakes are represented 
by ■, Open-Habitat snakes are represented by ☐. 
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Table 3.1 Weight (g) to length (snout-to-vent; m) ratio for male Western Rattlesnakes radio-
tracked in the Thompson-Nicola and Okanagan-Similkameen regions in British Columbia 
(2010 and 2011) grouped according the type of habitat the animals reached on their outgoing 
migrations. All values reported ± 1 standard deviation.  

Group 
Spring Weight:SVL  

(g/m) 
Fall Weight:SVL  

(g/m) 
% weight  

change 
Pooled (n=30) 0.54 ± 0.10 0.66 ± 0.16 20.0 ± 16.5 
Forest snakes (n=15) 0.58 ± 0.10 0.74 ± 0.13 29.2 ± 15.8 
Open-Habitat snakes  (n=15) 0.51 ± 0.10 0.57 ± 0.15 10.1 ± 11.9 
 

 
 
 
 
 
 
Table 3.2 Mean frequency of thermoregulatory behaviours at snake locations (Basking - a 
snake is motionless and exposed to the sun; Active - the snake is not under cover and 
engaged in feeding, mating or moving, or resting in the shade; Under cover - the snake is 
under cover or partially under cover) of Western Rattlesnakes observed in open and forest 
habitats in southern British Columbia. 

Behaviour 
Location Habitat type 

ANOVA Forest Open-Habitat 

Basking 25% ± 23% 42% ± 24% Habitat: F1,12=3.63, P=0.081; 
Snake: F31,12=0.976, P=0.549 

Active 57% ± 27% 20% ± 17% Habitat: F1,12=26.77, P=0.002; 
Snake: F31,12=1.32, P=0.311 

Under cover 18% ± 20% 38% ± 22% Habitat: F1,12=9.93, P=0.008; 
Snake: F31,12=1.02, P=0.512 
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Figure 3.3  Mean daily body temperature for telemetered Forest snakes and Open-Habitat 
snakes by month during the active seasons of 2010 and 2011 in British Columbia. Forest 
snakes’ means are represented by ■, Open-Habitat snakes’ means are represented by □.  
Means are shown with 1 standard deviation, Forest snakes’ error bars are represented by 
solid lines, Open-Habitat snakes’ error bars are represented by dashed lines. 
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Table 3.3 Average differences between Western Rattlesnakes’ body temperatures (°C) 
measured with implanted iButtons and environmental air and ground temperatures measured 
at the snake location and at random locations in the surrounding habitat within 5 metres in 
British Columbia. Air temperatures were measured at 10 cm above ground level. 

Response All locations 

Locations in 
Forest 
habitat 

Locations in 
Open habitat 

Difference (°C)  between snakes’ body temperature 
and the air temperature measured at snakes’ location 0.33 + 3.79 0.05+3.72 0.44+3.82 

Difference (°C)  between snakes’ body temperature 
and the ground temperature measured at snakes’ 
location 

-4.06 + 6.20 -3.84+6.09 -4.15+6.27 

Difference (°C)  between the air 
temperature measured at snakes’ 
location and the average measured 
at 4 random locations 

1 m from 
snake location 0.64 + 4.39 0.47+4.76 0.69+4.28 

5 m from 
snake location 0.96+ 7.02 -0.33+5.03 1.37+7.51 

Difference (°C)  between the 
ground temperature measured at 
snakes’ location and the average 
measured at 4 random locations 

1 m from 
snake location -0.64 + 7.51 -0.01+7.04 -0.84+7.66 

5 m from 
snake location -0.42+8.32 -0.48+8.35 -0.40+8.33 
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DISCUSSION 

Forest snakes had better body condition and proportionally more weight gain than 

Open-Habitat snakes. These observations suggest positive repercussions for the rattlesnakes 

that utilize forest habitat, similar to those observed by Lomas et al. (2015) in snakes that 

avoided disturbed areas of the landscape. In the forest, less variable environmental 

temperatures were expected to impose fewer thermal constraints on snakes’ activities, and 

therefore, increased energy intake and subsequent weight gain (Huey and Berrigan 2001). 

Occurring year over year for snakes migrating to forest habitats, this effect would explain the 

observed better body condition observed in forest snakes. Increased energy intake (given 

increased time available for foraging), in combination with lower energy demands, may 

result in caloric excesses that would be allocated to growth, resulting in increased weight 

gain. It is unknown, however, whether the water balance between snakes in open and forest 

habitats might differ, as it is likely that increased exposure in open habitats may result in 

more rapid water loss and therefore, less weight gain. 

Basking in the sun and retreating under cover to escape the heat of the day are 

thermoregulatory behaviours that snakes utilize to maintain their body temperatures within 

an optimal range (Huey and Stevenson 1979). Employing these behaviours at different 

frequencies represents unique use of thermoregulatory strategies to reflect differing thermal 

conditions encountered in open habitats and forest habitats. Snakes in forest habitats were 

observed being active (e.g., resting in the shade, moving, mating) at higher frequencies than 

snakes in open habitats, which were more frequently observed beneath cover objects or in 

retreat locations. Thus, snakes in forested habitats may be able to devote more time during 

the day to other aspects of life history, such as mating, as thermal insulation in the forest 

keeps daily temperatures lower than in open habitats. Blouin-Demers and 

Weatherhead (2001) suggest that snakes in the forest spent less time basking at sunrise to 

regain heat, allowing increased time spent foraging. In my study, however, the frequency of 

snakes basking was not different between the two habitats, suggesting that staying warm 

enough may not be a differentiating constraint between the two habitats and indicating that 

reaching the optimal body temperature range may not be more difficult in one habitat as 

opposed to the other. Rather, as the frequencies of being under cover and being active did 
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differ, the results of my study suggest that avoidance of high temperatures may influence 

rattlesnake behaviour in open and forest habitats in British Columbia. In open habitat, snakes 

likely seek shelter from the heat of the day (Huey et al. 1989), while those in the forest were 

protected by the shade and thermal insulation provided by the canopy. 

Snakes in this study maintained similar daily average body temperatures for most of 

the year, with the exception of July 2011 when snakes in open habitats had higher daily 

average body temperatures than those in forest habitats. Therefore, snakes in different 

habitats are likely adjusting their thermoregulatory behaviour to achieve similar body 

temperatures in environments with different temperatures. Moving between microsites 

(locations) in the local landscape is the basis of behavioural thermoregulation 

(Huey et al. 1989).  

My study suggests that the thermal conditions in forest habitats may minimize 

behavioural thermoregulatory constraints; however, this result contrasts those by several 

other studies of snakes using closed-canopy habitats. The thermal homogeneity of dense 

forest in Australia was found to have constraining effects on snakes (Fitzgerald et al. 2003). 

Forest edges have been identified as being high quality thermal habitat, with environmental 

temperatures being closer to the optimal range of temperatures for snakes (Blouin-Demers 

and Weatherhead 2002), while open grasslands were lower quality and interior forest habitats 

were of intermediate value. In southern British Columbia; however, the Douglas-fir forests 

typically have semi-open canopies (Grasslands Conservation Council 2004, Meidinger and 

Pojar 1991), allowing for warm spots to occur within the forest while still providing thermal 

stability.  

However, there may be trade-offs for animals using forest habitat. The forest canopy 

provides both thermal insulation and shade, but results in basking opportunities potentially 

being concentrated in openings that the sunlight can penetrate through. These openings also 

may be locations where aerial predators concentrate their attention on the forest floor 

(Blouin-Demers and Weatherhead 2002). This could increase the predation risk for 

rattlesnakes basking in forest habitats. This was not reflected in the comparative mortalities 

in my study, although my sample sizes were relatively small. 
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To compensate for the landscape-scale differences that exist both within and between 

hibernating populations of these animals that I showed in Chapter 2, snakes in different 

habitats perform microhabitat selection to compensate for temperature changes 

(Brown et al. 1982, Gannon and Secoy 1985, Wills and Beaupre 2000, Shoemaker and 

Gibbs 2010), as evident in my results. Additionally, animals using forested habitat displayed 

higher body condition, partly explaining the dichotomous migratory movements by Western 

Rattlesnakes. 

For the Open-habitat snakes in my study, the thermoregulatory benefit of spending 

time under cover to escape the heat of the day has associated costs, such as lost time for 

movement or foraging, which in turn may explain the lower body condition in this group of 

snakes (Blouin-Demers and Weatherhead 2001, Dunham et al. 1989). Differential use of 

resources, habitats and behaviours, including thermoregulatory behaviours, have ecological 

costs and benefits (Shoemaker and Gibbs 2010). Animals performing movements and other 

behaviours must balance the costs with potential benefits (Fryxell et al. 2014, Sears and 

Angilletta 2015, Wishingrad et al. 2014). Small-scale movements and behaviours, such as 

shifting positions to maintain optimal body temperatures as discussed in this chapter, may be 

worthwhile for an animal if the benefits outweigh the costs (Huey and Slatkin 1976).  

These results, in combination with existing knowledge of micro-habitat use by this 

species in British Columbia (Gomez et al. 2015), provide insight into aspects of animals’ use 

of habitat attributes in varying habitat types. The results of the study presented in this chapter 

contribute to our understanding of microsite selection by Western Rattlesnakes throughout 

their range in British Columbia. Snakes that utilize forest habitats appear to spend more time 

being active, have fewer thermal constraints on their local habitat use and behaviour, and 

subsequently, have an advantage, evidenced by heavier bodied snakes. Animals in different 

habitats perform thermoregulatory behaviours to maintain physiologically optimal body 

conditions (Blouin-Demers and Weatherhead 2002, Manju and Sharma 2014, Row and 

Blouin-Demers 2006). The consideration of thermal attributes of habitat across a variety of 

scales, and contrasted between different habitats used by individuals in a population, may be 

particularly pertinent in temperate climates where thermal constraints can influence animals’ 

activity and behaviour. 
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CHAPTER 4. SUMMARY AND MANAGEMENT IMPLICATIONS 

SUMMARY 

 This study strove to understand the role of thermal attributes of habitat in animals’ 

habitat utilization and migratory movements on multiple scales. Radio-telemetry and GIS 

modelling were used to study the seasonal migration patterns, small-scale habitat use, and 

behaviour of rattlesnakes originating from a number of dens within the species range in 

British Columbia. Specifically, the objectives of this thesis were to investigate (a) whether 

forest habitat use by temperate snakes is unusual, (b) whether thermal patterns on the 

landscape dictate the movements of snakes in British Columbia on landscape and local scales 

and (c) whether there are costs or benefits associated with using habitats that differ in thermal 

properties. 

 Establishment of the prevalence of forest habitat use, observation of unique patterns 

of thermoregulatory behaviours between open and forest habitats, and identification of 

potential benefits of alternative habitat usage were among the notable results of this thesis 

research.  

Expressly, key findings of this thesis are: 

x Forest habitat use by arid-habitat snakes is common in British Columbia. The 

snake migrations documented in this thesis corroborate the findings of 

Gomez et al. 2015, and rattlesnakes in British Columbia can no longer be 

associated with only grassland habitats.  

x Many snakes use warmer areas of the landscape during annual migrations and this 

result is significant in the late stage of the outgoing migration. Specifically, 

snakes that are associated with forested destination habitats use warmer areas of 

the landscape than those in open habitats. 

x Snakes in the open habitats were more frequently observed under cover objects 

during the day, potentially to escape the heat, while snakes in the forest were 

more frequently observed active (i.e., moving, mating). Snakes in both habitat 

types were observed basking at approximately equal frequencies. 
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x Snakes that used forest destination habitat appear to be in better condition than 

snakes that used open habitats throughout the active season. These snakes had 

better body condition indices (i.e., higher mass given their length) and gained 

more weight over the course of the active season. 

 The results of this research generally confirmed my predictions that snakes would be 

using both forest habitats and warmer areas of the landscape. On the local scale, microhabitat 

use and thermoregulatory behaviours appear to be less constrained by thermal factors in 

forest habitats, potentially contributing to a better body condition in snakes that use forest 

destination habitats. The results of this study contribute to our understanding of habitat use 

by reptiles in temperate regions and may have significant implications for the conservation of 

these animals. 

MANAGEMENT AND CONSERVATION 

Knowledge of habitat use patterns in migratory animals is imperative in designing 

effective management strategies. Migrating animals are particularly difficult to manage 

(Milner-Gulland et al. 2011), as migrations may be difficult to predict and may cause animals 

to leave protected areas.  

 The findings of my study have implications for the management and conservation of 

migratory snakes in British Columbia. Western rattlesnakes, Great Basin gopher snakes 

(Pituophis catenifer) and Western yellow-bellied racers (Coluber constrictor) are restricted 

to the grasslands and forests of the arid valleys of south-central British Columbia. Large 

expanses of these habitats have been lost to agriculture and urbanization in the Thompson-

Nicola and Okanagan-Similkameen regions. Only a small portion (less than 15%) of the 

remaining arid land area is protected in provincial parks, protected areas, wildlife reserves, 

and ecological reserves [Grasslands Conservation Council (GCC) 2004]. Currently, 

management and conservation of snakes in these regions is largely focused on hibernating 

habitat, due to a lack of concrete information on large-scale habitat use during the active 

season. The results of my study, specifically increased knowledge of both local and 

landscape habitat use, will aid in the identification of high-value habitats, both within and 
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outside of protected areas, and will enable more effective management of snakes during their 

active season. Increased knowledge will result in more effective designation of WHA 

protected areas, tailoring designs specifically to the hibernacula in question and the habitat 

available to the snakes (Appendix B).  

Approximately 36% of arid habitats in Thompson-Nicola and Okanagan-

Similkameen regions are subject to grazing leases (GCC 2004). Forestry activity in the 

Douglas-fir forests is also widespread. The thermal factors discussed in this thesis, in 

combination with existing knowledge of snakes’ habitat use, can be used to identify 

potentially high-value areas of the landscape surrounding hibernacula. Forestry and ranching 

practices may be evaluated for their effect on snakes beyond the boundaries of grassland and 

open habitats. Practices may then be put in place that avoid areas identified as high-value 

habitat and that protect or work to maintain natural amounts of structural habitat features.  

LIMITATIONS AND FUTURE RESEARCH PRIORITIES 

The comprehensive design of this study provided a broad overview of the rattlesnake 

population across the species range in British Columbia. While the conclusions of this 

research are relevant across the species range, there may be individual snakes and 

populations that may behave differently. Natural variation in behaviours among individuals 

and populations of animals results in limitations in wildlife studies (Gillies et al. 2006). 

These limitations were minimized in this thesis but the accommodation of individual effects 

in the analysis.  

 

Radio-telemetry studies are among the most labour-intensive and, therefore, 

expensive types of study to undertake. Experimental design must account for the trade-off 

between number of animals tracked and number of locations obtained per animal, as more 

study animals glean more accurate conclusions about the population as a whole; however, 

using fewer study animals allows researchers to collect more detailed information about 

individuals (Millspaugh and Marzluff 2001). Researchers must also be selective in what 

information is necessary to answer their research questions, as increased capacity of data 

loggers, life span of transmitter batteries, or range of transmitters, result in increased weight 
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of transmitters and/or data loggers, which may affect animals’ health or behaviour 

(Fedak et al. 2002). In my study, the goal of balance between number of study animals, 

number of study sites and avoidance of adverse effects on snake populations, led to the 

selection of three snakes per hibernacula, with ten hibernacula in total. This proved an 

effective method of gathering an adequate amount of information across a broad geographic 

range and a suite of dens in varying landscapes, allowing for more widely applicable 

conclusions.  

 It important to remember that this study, like many wildlife ecology investigations, 

was temporally limited and represents a ‘snapshot in time’, and should be interpreted as such. 

My study captured the movements of snakes from each hibernaculum for a single year. 

While there is evidence that snakes undertake migrations of similar lengths and directions in 

concurrent years (Gomez et al. 2015, Jorgensen 2009), it is unclear whether migrations 

evolve or change conspicuously over a snakes’ lifespan. Long term monitoring of individuals 

within populations would provide insight into long-term migratory dynamics. Additionally, 

my study focused only on the day-time behaviour of rattlesnakes during the active season. 

Night-time behaviours could be considered in the future, as there is limited knowledge of the 

proportion of life history functions that occur during the night versus during the day and 

whether this changes over the course of the active season, or in response to changing 

temperatures.  

 The results of this research indicate that thermal attributes of habitat are important 

factors in the ecology of temperate snakes and should be included in developing both 

conservation and management strategies. A robust tool could be developed that may allow for 

better landscape planning and management strategies. This tool would allow wildlife and 

habitat managers to predict the potential use of the landscape. Results of this study could be 

incorporated, along with existing knowledge of rattlesnake habitat use on multiple scales, into 

a complex, comprehensive model of rattlesnake habitat use in British Columbia. This could be 

accomplished using a Resource Selection Function model, which may be verified using 

occurrence data from multiple studies, given similar data parameters. Monitoring of snake 

populations and model fit over the long term would be valuable, particularly with an eye to 

changes in temperature and vegetation due to climate change (see Appendix C).  
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 A comprehensive habitat model for rattlesnakes would facilitate the evaluation of the 

efficacy of landscape management for temperate reptiles that is normally centred on 

hibernating habitats but does not take into account active-season habitat use. Combined with 

local knowledge and experience, this tool would allow much more effective designation of 

protected habitat areas. The model may be specifically applicable to other snake species in 

British Columbia such as gopher snakes and racers. The lessons learned could be extrapolated 

to other species and wildlife communities (short-eared owl, grassland birds).  

The primary focus of this study was to determine whether thermal attributes of habitat 

act as a mechanism for active season migrations and small-scale habitat use; however, the 

roles of food supply, moisture limitations, and mate-searching in driving snake movements 

are unknown. These variables were beyond the scope of this project, but provide opportunity 

for further study. 

CONCLUSION 

 Thermoregulation on multiple scales is crucial for reptiles in temperate regions, 

where animals have to deal with shorter active seasons and variable environmental 

conditions. Overall, the findings of this research indicate that long-distance migration to 

forest habitats may be driven, at least in part, by thermal requirements – a search for warmer 

habitats relative to the surrounding landscape. As expected, microhabitat selection in linked 

to thermoregulatory behaviours, especially for snakes in open habitats that are exposed to 

extreme day and night temperatures. This thesis also established that forest habitat use by 

arid-habitat snakes in temperate regions may be more common than previously thought and 

that there appear to be advantages to snakes using those habitats. 

 The knowledge of Western Rattlesnakes summer habitat use will further inform local 

and regional management of the species. Developing knowledge and tools that can aid in the 

prediction of behaviour and habitat use of Western Rattlesnakes, and perhaps other northern 

snake species, will greatly improve our ability to manage ecosystems that are fundamentally 

important to the economy of our province, where ranching and forestry coincide with high-

value snake habitat. Not only that, these local and landscape scale patterns have obvious 
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repercussions for snakes using forest habitats in the event of shifting ecosystem boundaries 

and thermal regimes under various climate change scenarios. 
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APPENDIX A 
 

MORPHOLOGY, CAPTURE AND SURGERY DATA FOR STUDY ANIMALS 

 
 

In this Appendix, I provide the morphological measurements and details of snake 

capture, surgery, and telemetry for the animals from hibernacula in British Columbia that 

were included in this study. 

 
  



 Table A
1. M

orphology, capture and surgery data for W
estern R

attlesnakes radio-telem
etered in 2010 in the Thom

pson-N
icola region 

of B
ritish C

olum
bia. 

Study Year 

Snake ID 

Den 

Weight (g) - Spring 

Weight (g) - Fall 

SVL (mm) 

VTL (mm) 

iButton weight 

Transmitter weight 
(g) 

Hardware total % of 
body weight 

Spring Capture Date 

Spring Surgery Date 

Spring Release Data 

Fall Capture Date1 

Fall Surgery Date 

Fall Release Data 

Surgery Notes – 
Adhesions 2 

2010 

PI01 
TN

3 
530 

-- 
962 

-- 
3.3 

5.2 
1.60 

14-A
pr 

15-A
pr 

17-A
pr 

M
-Jul 

-- 
-- 

-- 
PI02 

TN
3 

360 
400 

775 
-- 

3.3 
3.6 

1.92 
14-A

pr 
15-A

pr 
17-A

pr 
 20-Sep 

21-Sep 
24-Sep 

N
one 

PI03 
TN

3 
485 

525 
869 

-- 
3.3 

5.2 
1.75 

14-A
pr 

15-A
pr 

17-A
pr 

 19-Sep 
21-Sep 

24-Sep 
M

inor 
SP01 

TN
6 

565 
730 

902 
66 

3.3 
5.2 

1.50 
14-A

pr 
15-A

pr 
17-A

pr 
 19-Sep 

21-Sep 
24-Sep 

M
inor 

SP02 
TN

6 
565 

700 
826 

-- 
3.3 

5.2 
1.50 

14-A
pr 

15-A
pr 

17-A
pr 

 19-Sep 
21-Sep 

24-Sep 
N

one 
SP04 

TN
6 

430 
571 

772 
57 

3.3 
5.2 

1.98 
14-A

pr 
15-A

pr 
17-A

pr 
 19-Sep 

21-Sep 
24-Sep 

M
inor 

SP08 
TN

6 
600 

688 
920 

77 
3.3 

5.2 
1.42 

22-Jun 
23-Jun 

24-Jun 
 20-Sep 

21-Sep 
24-Sep 

N
one 

R
I01 

TN
5 

463 
525 

879 
70 

3.3 
3.6 

1.49 
16-A

pr 
20-A

pr 
22-A

pr 
 22-Sep 

23-Sep  
25-Sep 

N
one 

R
I02 

TN
5 

590 
636 

980 
-- 

3.3 
5.2 

1.44 
19-A

pr 
20-A

pr 
22-A

pr 
23-Sep 

23-Sep 
25-Sep 

M
ajor 

G
M

01 
TN

2 
450 

610 
902 

79 
3.3 

5.2 
1.89 

19-A
pr 

20-A
pr 

22-A
pr 

T-Sep 
-- 

-- 
-- 

FA
01 

TN
1 

640 
795 

886 
70 

3.3 
5.2 

1.33 
18-A

pr 
20-A

pr 
23-A

pr 
22-Sep  

23-Sep  
25-Sep  

M
inor 

FA
02 

TN
1 

444 
600 

829 
64 

3.3 
5.2 

1.91 
18-A

pr 
20-A

pr 
23-A

pr 
8-M

ay* 
9-M

ay* 
10-M

ay* 
M

inor 
FA

03 
TN

1 
490 

695 
831 

-- 
3.3 

5.2 
1.73 

18-A
pr 

20-A
pr 

23-A
pr 

22-Sep 
23-Sep 

25-Sep  
N

one 
PZ01 

TN
4 

462 
516 

854 
64 

3.3 
3.6 

1.49 
18-A

pr 
20-A

pr 
23-A

pr 
T-Sep 

-- 
-- 

-- 
PZ02 

TN
4 

707 
670 

991 
73 

3.3 
5.2 

1.20 
18-A

pr 
20-A

pr 
23-A

pr 
 18-Sep 

21-Sep  
24-Sep  

N
one 

PZ03 
TN

4 
444 

548 
841 

70 
3.3 

5.2 
1.91 

18-A
pr 

20-A
pr 

23-A
pr 

22-Sep 
23-Sep 

24-Sep  
M

inor 
PZ04 

TN
4 

443 
570 

858 
60 

3.3 
5.2 

1.92 
18-A

pr 
20-A

pr 
23-A

pr 
18-Sep 

21-Sep 
24-Sep 

M
inor 

N
otes: 

1 
M

 = snake m
ortality; T = transm

itter failure;  * = capture occurred the follow
ing spring 

 
2 

A
dhesions = bands or casing of fibrous tissue that form

 around im
planted hardw

are, classify M
inor, M

ajor, or N
one 
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Table A
2. M
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attlesnakes radio-telem
etered in 2011 in the Thom
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icola and 

O
kanagan-Sim

ilkam
een regions of B

ritish C
olum
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Study Year 

Snake ID 

Den 

Weight (g) - Spring 

Weight (g) - Fall 

SVL (mm) 

VTL (mm) 

iButton weight 

Transmitter weight (g) 

Hardware total % of 
body weight 

Spring Capture Date 
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pr 
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G

X
Y
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pr 
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pr 
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ay 
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V
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pr 
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pr 
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-- 

-- 
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03 
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APPENDIX B 
 

EFFICACY OF EXISTING PROTECTED AREAS FOR WESTERN RATTLESNAKES 
 IN BRITISH COLUMBIA 

 

In this Appendix, I briefly examine the effectiveness of the existing protection 

mechanisms on rattlesnake hibernacula in British Columbia. Telemetry data from 10 

hibernacula was used to investigate snakes’ movements in relation to the boundaries 

protected areas surrounding the hibernacula. 

INTRODUCTION 

Managed as a species-at-risk on both provincial and federal levels, there are several 

mechanisms in place for the protection of Western Rattlesnakes (Crotalus oreganus) and 

their habitat in British Columbia, Canada. The current protection of rattlesnakes varies 

depending on the land tenure and ownership.  

The BC Wildlife Act (1982) affords protection to individuals of the species across all 

land types. Habitat is only protected under the BC Wildlife Act when designated as a wildlife 

management area, critical wildlife area or wildlife sanctuary. Under the Act, it is an offense 

to harass, harm, capture or kill an individual animal without a permit unless it poses a threat 

to a person or property. Since venomous snakes are perceived as threatening by their very 

nature, it is likely that the Act provides little real protection from persecution. On privately 

owned land, the BC Wildlife Act is the only protective legislation that applies.  

On federal Crown Land (including Indian Reserves, Federal Parks, and Federal 

Wildlife management areas), the Species at Risk Act (SARA) protects both individual 

rattlesnakes and their habitats. The federal Species at Risk Act (SARA) prohibits killing, 

harming, or capturing an individual of a listed wildlife species. It is also prohibited to 

damage or destroy the residence of one or more individuals of a listed wildlife species, such 

as a hibernacula.  
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Rattlesnakes on provincial Crown Land are included in the Identified Wildlife 

Management Strategy (IWMS) under the Forest and Range Practices Act (FRPA). Habitat 

protection in the form of Wildlife Habitat Areas (WHAs) are intended to safeguard known 

denning sites and areas of known habitat including travel corridors and foraging areas 

(Committee on the Status of Endangered Wildlife in Canada 2004, Sarell 2004). The 

Provincial BMPs for Amphibians and Reptiles recommend that critical habitats for all life 

history stages are protected (Ovaska et al. 2004). WHAs for rattlesnakes are intended to 

maintain and link denning and foraging habitat, travel corridors, and egg-laying sites within 

and between adjacent populations, including habitats that are important for the conservation 

of this species (e.g., communal hibernacula, especially for multi-species hibernacula, and 

talus slopes, rock outcrops, or cliff habitats).  Forty-two percent of hibernacula in British 

Columbia occur on provincial Crown Land where WHAs can be applied (Hobbs 2013). Due 

to limitations in knowledge of site-specific movement and migration patterns, and 

accommodation of existing land uses and tenure, generally, only habitat in the immediate 

vicinity of hibernacula is protected, while other critical habitats, including migration 

corridors, foraging and mating habitats, often are not within the boundaries.  WHAs are 

generally approximately 200–300 ha in size, but size depends on site -specific factors such as 

suitable habitat, and adjacent land use and ownership. Within the WHA, range practices and 

recreation will be managed to limit disturbance (BC Ministry of Water, Land and Air 

Protection 2004). 

Parks and protected areas are also established on provincial Crown Land to conserve 

biodiversity values and habitat for multiple species and ecological communities at once and 

may contain key habitats for multiple species. Certain types of development and disturbance 

are prevented or limited within their boundaries, but activities that may be detrimental to 

wildlife species (i.e., grazing, recreation) often are still allowed. Specific guidelines may be 

in place in parks to protect known resident species including rattlesnakes. 

While there appears to be an abundance of protection options available for 

rattlesnakes in BC, scenarios exist where snakes remain unprotected. For example, limited 

protection applies where hibernacula and their habitat occur on privately owned land. Here, 

the BC Wildlife Act protects the snakes themselves, but habitat is not protected. Alternate 

avenues for management and protection of the species are education and stewardship of 



B-3 

 

private landowners, ranchers and members of the community. In addition, the effectiveness 

of protection measures on provincial Crown Land may be limited by lack of site-specific 

information and existing land uses. 

The objective of this appendix is to examine how effective the existing protection 

mechanisms are at capturing the full-life history of the animals they protect. The specific 

questions that I endeavor to answer in this appendix are as follows: (1) are snakes travelling 

outside of protected areas surrounding their hibernacula, (2) to what extent are snakes using 

habitat outside protected areas. 

METHODS 

As part of my thesis examining the thermal-spatial ecology of snakes, I radio-tracked 

rattlesnakes from a number of hibernacula throughout the Thompson-Nicola and Okanagan-

Similkameen regions of British Columbia (see Chapter 1, Figure 1.3) during the summers of 

2010 and 2011. Seven of the 10 hibernacula studied had established protected areas 

surrounding them (Table B1). Four of these hibernacula were located inside established or 

proposed parks (Lac du Bois Provincial Park [n=3] and Oliver Mountain [proposed; n=1]). 

Three hibernacula were located in established WHAs, and the remaining three hibernacula 

were unprotected, with no special designation designed to protect the animals.  

I monitored the seasonal movements of snakes originating from these 10 hibernacula, 

discussed in Chapter 2 of this thesis. Where hibernacula occurred within protected areas, the 

distances travelled by the telemetered snakes were examined in relation to the park or WHA 

boundaries using ArcGIS 10.3. All statistics were performed in R (R Core Development 

Team 2011) and used a significance level of α=0.05. Means were reported ± 1 standard 

deviation, unless otherwise stated. 

RESULTS 

Two of 11 telemetered snakes from hibernacula within parks moved outside the park 

boundaries, both from hibernaculum in Lac du Bois Provincial Park. The straight-line  
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Table B1. Existing habitat protection for Western Rattlesnakes at study hibernacula in the 
Thompson-Nicola and Okanagan-Similkameen regions of British Columbia.  

Hibernaculum 
Number of  

study snakes 
 

Existing Habitat Protection 
Size of Protected 

Area (ha) 
TN3 3  Lac Du Bois Provincial Park 

948.0 TN5 2  Lac Du Bois Provincial Park 
TN6 3  Lac Du Bois Provincial Park 

     

OS2 3  Oliver Mountain Provincial Park 
(proposed) 

365.0 

     
TN1 3  Wildlife Habitat Area 3-008 180.4 

     
TN4 4  Wildlife Habitat Area 3-112 144.8 

     
OS3 3  Wildlife Habitat Area 8-064 254.4 

     
TN2 1  None n/a 
OS1 4  None n/a 
OS4 4  None n/a 
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distance travelled beyond the park boundaries by these snakes, originating from different 

hibernacula, were 40 m and 425 m, respectively. 

 All telemetered snakes originating from hibernacula within WHAs travelled beyond 

the boundaries of their respective WHA (see Table B2; Figure B1). The average straight-line 

distance moved beyond the WHA boundaries was 1445.4 ± 926.8 m (n=10). The range of 

dates when animals were outside of the boundaries of their respective WHAs ranged from 

May 27 to September 29. 

DISCUSSION 

Based on the snakes and hibernacula I sampled, it appears those snakes originating 

within parks were afforded relatively effective protection over the course of their active 

season migrations, as only 2 of 11 snakes actually travelled beyond park boundaries. Overall, 

parks likely provide superior protection to species-at-risk such as snakes, due to more 

stringent restrictions of activities and land uses within their boundaries, but my work did not 

specifically address this issue.   

All of the snakes emerging from hibernacula protected by WHA designations moved 

outside of the boundaries of the WHA for the bulk of the active season, using predominantly 

unprotected habitat. It is likely that this occurs at other hibernacula as well, and 

consequently, many of the male snakes and non-gravid female snakes (Macartney and 

Gregory 1988) performing long distance migrations from hibernacula protected by WHAs 

may be using unprotected habitat for much of the active season.  A study of gopher snakes 

(Pituophis catenifer deserticola) by Williams et al. (2012) showed that establishment of 

typical, small WHAs around hibernation sites was inadequate to protect the animals.  

Idealized circular WHAs of 193 ha were superimposed on known hibernacula, based on the 

200 – 300 ha size mandated by the government (Bertram 2004). Eighty-five percent of 

snakes in their study stayed within the hypothetical WHAs, while 15% of snakes moved 

beyond the boundaries (Williams et al. 2012). The actual WHAs in my study were also small, 

averaging 193 ha. In my study, 100% of the telemetered animals moved beyond the 

boundaries of the protected area, suggesting that these small protected areas may be even less 

effective for rattlesnakes than for gopher snakes. 
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Table B2. Distance (m) moved beyond Wildlife Habitat Area boundaries by Western 
Rattlesnakes in the Thompson-Nicola and Okanagan-Similkameen regions of British 
Columbia.  

Wildlife Habitat 
Area (WHA)1 Study Snake 

Distance from turn-around 
location to closest WHA 

boundary (m) 
Mean distance outside 

WHA boundary (± 1 SD) 

8-064 

OS3-02 1309.25 

1179.7 ± 657.2 OS3-05 467.44 

OS3-04 1762.45 

3-122 

TN4-01 96.42 

1867.9 ± 1295.7 
TN4-02 1791.57 

TN4-03 2487.54 

TN4-04 3096.16 

3-008 

TN1-01 532.00 

1147.7 ± 565.4 TN1-02 1267.49 

TN1-03 1643.66 
1Wildlife habitat areas are identified by numbers representing their planning region and individual 

identification numbers (BC Ministry of Environment, no date). 
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Figure B1. Snake movements relative to the boundaries of Wildlife Habitat Areas (WHAs) in 
the Thompson-Nicola and Okanagan-Similkameen regions of British Columbia, 
Canada.  The locations of hibernacula are represented by star (�) symbols, while the 
boundaries of the WHA are demarcated by the grey dashed lines. The snakes’ locations over 
the course of their summer migration movements are represented by different symbols for 
each individual (☐,|, Δ). 
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The cursory analysis I present here demonstrates that existing habitat protection of 

WHAs may not be sufficient to fully protect rattlesnakes.  To some degree, the results of my 

work presented in Chapters 2 and 3 of this thesis may allow for inferences to be better made 

by managers on summer habitats likely to be used by rattlesnakes using particular 

hibernacula.  Knowledge of potential behavioural differences on large and small scales 

between rattlesnake populations will allow managers to increasingly adapt management 

strategies to specific hibernacula, including expanding the size of WHAs to the maximum 

extent possible, while managing the shape of protected areas to incorporate high quality 

snake habitat or areas known to be used by migrating snakes. As other populations of 

temperate snakes, including gopher snakes, racers (Coluber constrictor) and rubber boas 

(Charina bottae), likely exhibit similar habitat uses and face similar thermal and habitat 

constraints, these principles may be applied more broadly, potentially by creating multi-

species protected areas.  

While wildlife managers will aspire to improve the design of existing and future 

WHAs, and focus these areas on areas of high-value habitat, current land use and ownership 

will constrain these activities. Thus, the encouragement of stewardship and habitat protection 

by individual landowners and the public remains an important component in effective 

protection of species at risk. 
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APPENDIX C 
 

CLIMATE CHANGE AND THE EFFECTS OF CHANGING THERMAL REGIMES ON 

REPTILES IN BRITISH COLUMBIA: A QUALITATIVE NOTE 

INTRODUCTION 

In the last 100 years, the earth has warmed by 0.6°C, with most of that warming 

occurring in the latter part of the century (Walther et al. 2002).  Worldwide, this has resulted 

in longer freeze-free periods, more variable precipitation regimes, and vegetation shifts, both 

over elevations and latitudes (Walther et al. 2002).  While these shifts have affected many 

organisms, for instance, song-bird migration (Shamoun-Baranes et al. 2006), there may be 

particularly significant effects on ectothermic animals, as temperature is a key factor in most 

life processes. Thermal mapping of the landscape can also be used to assess changes in 

thermal characteristics under climate change scenarios. These changing thermal regimes 

potentially impact on ectotherm habitat selection.   

Plasticity in phenotype and behavior may allow ectotherms to adapt to changing 

thermal regimes, but there are (presumably) limits to the speed at that animals can adapt 

(Fuller et al. 2010). Ectotherms in temperate regions may have broader thermal tolerance 

than those in tropical regions (Deutsch 2008), however, avoidance of extreme body 

temperatures remains key.  Kearney et al. (2009) suggest that changing vegetation cover, due 

to climate change, may be the primary consideration for ectotherms under changed thermal 

regimes. Vegetation cover is one of two main types of feature used for small-scale 

behavioural thermoregulation, the other being structural features such as rocks and crevasses 

(Huey et al. 1989). 

Climate change is a global phenomenon; however, some areas will remain within the 

current climate envelope, while others will experience a great deal of change 

(Penman et al. 2010).  In British Columbia, significant change is expected, as the predicted 

average temperature increase is 0.5°C per decade (Hamann and Wang 2006).  Effects of 

climate change are already being observed. In the southern part of the province, some 
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reforestation efforts following natural or anthropogenic disturbance have failed due to 

drought and record high temperatures.  The mountain pine beetle epidemic has been partly 

attributed to warmer than average winter temperatures (Hamann and Wang 2006).  Under the 

majority of climate change scenarios, southern interior ecosystems are expected to get hotter 

and drier.  This will likely result in vegetation shifts including: an increase in the area and 

elevation range of the bunchgrass zone, decreased regeneration of Ponderosa pine following 

fire, natural mortality and mountain pine beetle kill; and desertification of already dry areas 

(Hamann and Wang 2006). 

EFFECTS ON REPTILES IN BRITISH COLUMBIA 

Shifting ecosystem boundaries, such as encroachment of forests into grassland 

habitats, may have significant effects on the habitat use by reptiles (Jezkova et al. 2015, La 

Sorte and Jetz 2012).  If there are thermoregulatory costs or benefits to using forested habitat, 

then this will potentially have far reaching impacts on reptile species that use these habitats 

in temperate regions (Dingle 1991). 

The effects on snakes in the Thompson-Okanagan are likely to be two-fold.  First, 

changes in the vegetation will modify the structure and heterogeneity of the landscape, 

requiring behavioral modifications to small- and large-scale thermoregulation.  On a local 

scale, desertification in some areas will lessen the amount of vegetation (big sage brush, 

shrubs, grass) that can be used for shelter from the environment (hot or cold), limiting snakes 

to structural features that may be less available or more spread out.  On a landscape scale, 

expansion of the bunchgrass zone would mean longer migrations to reach forested habitat 

and increased energy expenditure on travel, perhaps reducing overall fitness.  Secondly, 

changing seasonal temperatures and precipitation regimes will affect the timing of the 

rattlesnake active season in these regions.  Longer frost-free periods may incite earlier 

emergence from hibernation.  Increased precipitation in the spring and fall, however, may 

decrease the effectiveness of the spring and fall basking periods, reducing any benefits 

incurred from a longer active season. 

The information on thermal habitat use gleaned from this thesis, incorporated into a 

comprehensive habitat model could be applied to thermal regimes predicted under various 
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climate change scenarios in order to predict local effects on snake habitat use. This was not 

feasible within the scope of this study, but provides promising future opportunities. 
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