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ABSTRACT 

 Effective conservation strategies and management plans for wildlife species, 

especially species-at-risk, require demographic information on populations and an 

understanding of how local landscapes and management regimes impact them. Historic 

comparisons are especially important because gradual declines across large landscapes can 

go unnoticed as wildlife managers in each generation and region start with a lower initial 

population size estimation. This phenomenon is called the Shifting Baselines syndrome.  

 Replicating a historic study from 1981-1983, I conducted a mark-recapture study in 

2018-2020 on Western Rattlesnakes in the North Okanagan region of British Columbia. The 

study area spanned two habitats with contrasting levels of human influence: Kalamalka Lake 

Provincial Park and Coldstream Ranch. The former receives an average of 32,500 visitors per 

month during the active season for snakes, while Coldstream Ranch allows cattle grazing but 

is off-limits to humans. In the 35 years since the original study, the Park population was 

estimated to have declined by 50% and the Ranch population by 31%, for an overall decline 

of 40%. A separate analysis using only adult snakes showed less severe declines, suggesting 

a lack of recruitment of snakes into the population may be contributing to this decline. 

Qualitative observations of behavioural differences between sites also prompted a 

standardized test of defensive behaviour in animals across the two contrasting habitats. 

Snakes in the area of high human visitation were 9.5× less likely to display defensive rattling 

behaviour, and allowed approaching investigators 2.5 m closer on average before initiating 

rattling behaviour, compared to snakes in habitats with negligible human presence. 

 This study highlights the pitfalls of using point estimates of populations to assess the 

status of a species over a broad geographic area. These results also suggest that protected 

areas may not necessarily serve as ‘anchors’ for conservation. Further research spanning 

multiple landscapes and management types is necessary to differentiate between natural and 

anthropogenic pressures on populations. Revealing the specific pressures that may be at play 

in varying locations should be addressed for continued conservation.  

Keywords: Crotalus oreganus, population estimate, management, behaviour, rattling, 

shifting baselines, Western Rattlesnake, Northern Pacific Rattlesnake 
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CHAPTER 1 

INTRODUCTION 

Shifting Baselines 

The effective management of wildlife requires a strong understanding of the long-

term dynamics of ecosystems, communities, and populations (Lindenmayer et al., 2012). 

Ecological studies that monitor or revisit populations over many decades provide important 

information on complex processes, interactions, and trends that allow managers to produce 

tailored strategies as opposed to expert opinions or non-taxa-specific overarching 

management principles (Magnuson, 1990; Lindenmayer and Likens, 2010; Lindenmayer et 

al., 2012). Periodic assessments of wildlife populations are critical for quantifying ecological 

responses to natural and human disturbances (Likens, 1985; Carpenter et al., 1995). 

However, without historical reference data gradual declines over long time periods often go 

unnoticed; a phenomena termed the Shifting Baselines Syndrome (Pauly, 1995; Jackson, 

1997; Bohnsack, 2003; Folk et al., 2004; Huitric, 2005; Papworth et al., 2009; Soga and 

Gaston, 2018). Shifting Baselines Syndrome is our collective tendency to not recognize 

gradual declines, shifting our perspective over time such that degraded ecosystems start to 

“look” normal and acceptable. ‘Generational amnesia’ (Papworth et al., 2009), whereby the 

experience and knowledge of past managers or knowledge holders is not passed onto future 

generations, allows newer perceptions of normality to develop that are ignorant of historical 

and healthier conditions (Pauly, 1995). The widespread acknowledgement of this phenomena 

is relatively new, and in recent decades many studies identifying shifting baselines have 

arisen that span taxa and disciplines (Baum and Meyers, 2004; Newsome et al., 2007; 

Pinnegar and Engelhard, 2008; Rittenhouse et al., 2010; Turvey et al., 2010; Vera, 2010; 

Whipple et al., 2011; Bender et al., 2013; Santini et al., 2017). 

The establishment of shifting baselines is particularly worrisome given that species 

diversity is declining across the globe (Vors and Boyce, 2009; Potts et al., 2010; Barnosky et 

al., 2011; Ceballos et al., 2015; Ceballos et al., 2017; Saha et al., 2018) and that empirical 

data for many taxa are scarce or non-existent. According to the IUCN (2020), populations of 

mammals, birds, amphibians, reptiles, and fish have declined by an average of 68% since 

1970. In the coming century, the proportion of threatened species is expected to substantially 
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increase (Sala, 2000; Saha et al., 2018) due to human activities such as climate change, 

habitat destruction, resource exploitation, infectious diseases, and the invasion of exotic 

species (Cronin et al., 2014). When we consider the taxa that have been studied in a 

conservation context, there is greater cause for alarm. Cronin et al. (2014) assessed over 

4,000 studies that mention “wildlife conservation” and identified a severe bias towards 

mammals (42.8% of studies) and birds (19.2% of studies). Alarmingly, less than 200 

publications in this review investigated the conservation of reptiles (4.8%), fish (3.6%), or 

amphibians (2.1%). Underrepresentation of herpetofauna, despite a high proportion of 

species with conservation concern, and bias towards mammals and birds has been 

consistently identified (Clark and May, 2002; Lawler et al., 2006; Cronin et al., 2014) and 

there is little evidence to suggest an effort to increase parity of study taxa (Cronin et al., 

2014). 

Reptiles remain one of the least studied vertebrate groups and often are considered to 

be of less general interest than other taxa (Gibbons, 1988; Bonnet et al., 2002; Todd et al., 

2010). In fact, the number of reptilian species that have been assessed globally remains 

dismal: just 6% as of 2010 (Baillie et al., 2004; Todd et al., 2010). Reptiles have declined 

>50% globally since 1970, although data on squamate species trends are severely limited 

(Saha et al., 2018). In Canada, only 46 of 102 (45%) reptile and amphibian species have 

usable data on populations (WWF, 2017; see also Seigel 1993; Bonnet et al., 2002; Lind et 

al., 2005). Demographic baselines and robust datasets on reptiles are sparse and difficult to 

obtain considering there are knowledge gaps on basic life history and ecology and many 

species display cryptic colouration and behaviour, patchy distribution, and that (Zug et al., 

2001; Todd et al., 2010). These types of datasets are crucial for detecting population declines 

and for disentangling natural versus unnatural fluctuations and extinctions (Tinkle, 1979; 

Cody 1996; Gibbons et al., 2000). Furthermore, observations of reptile populations or 

behaviours can be used to identify changes or disturbances to the local environment (Beaupre 

and Douglas, 2009).  

Rattlesnake Populations in British Columbia 

Western Rattlesnakes inhabit dry valley bottoms in the south-central arid region of 

British Columbia (Fig. 1.1). Currently little is known about Western Rattlesnake population 
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sizes in Canada, and estimates vary widely and may be exaggerated in many areas 

(COSEWIC, 2015; Environment and Climate Change Canada, 2017). At the time of writing, 

Western Rattlesnakes are federally listed as “Threatened”, and placed on the “Blue-List” 

(‘special concern’) in British Columbia. Projections of serious declines (30-70% over the 

next 3 generations) are based upon extrapolations of limited data from singular dens or small 

areas, habitat modelling, and surveys confounded by detection biases (COSEWIC, 2015; 

Environment and Climate Change Canada, 2017). The necessity for further monitoring of 

this snake is exacerbated by the fact that the Okanagan Valley, which contains the majority 

of Western Rattlesnake range in Canada, is experiencing one of the fastest rates of urban and 

agricultural growth in the country (Okanagan Valley Economic Development Society, 2013; 

Statistics Canada, 2014). Without periodic assessment or continued monitoring, the cause of 

decline may be impossible to identify (Gibbons et al., 2000). Since the 2015 COSEWIC 

assessment, baseline population estimates for two populations of Western Rattlesnakes in BC 

now exist (Maida et al., 2018; Winton et al., 2019), as well as a much better understanding of 

their genetic structure and basic ecology, including reproductive and migration habits, 

responses to disturbance, and the impact of roads (Lomas et al., 2015; Winton et al., 2018; 

Lomas et al., 2019; Maida et al., 2019; Winton et al., 2019; Harvey and Larsen, 2020; 

Schmidt et al., 2020). However, the relative state of current-day populations cannot be 

properly interpreted without long-term data or robust comparisons to historical baselines. 

 

 

 

 

 

 

 

 

 



14 

 

 

FIGURE 1.1. Western Rattlesnake (Crotalus oreganus) range in British Columbia, Canada. 

(Adapted from: R. Reudink, British Columbia Ministry of Forest, Lands, Natural Resource 

Operations and Rural Development).  
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 In the early 1980’s a pioneering study by Macartney (1985) investigated the 

fundamental ecology of Western Rattlesnakes in the North Okanagan Valley of British 

Columbia (Macartney, 1985). Life-history parameters were documented through a three-year 

mark-recapture study at 24 communal dens from 1981 – 1983. The study focused on 

survival, growth, diet, and reproductive ecology. Radio-telemetry was also minimally 

employed in tracking several individual snakes to discern approximate home range size.  

 Macartney (1985) suggested that the populations surveyed at that time were 

rebounding from much lower levels in 1930s – 1950s. There is evidence to support that 

rattlesnakes were widely persecuted in the area in the early- to mid-20th century. For 

example, Cosens Bay was used as a WW2 training ground, and one soldier recalls his time in 

the area: 

“One of the first things they taught us in Vernon was to catch rattlesnakes on the range at 

Rattlesnake Point. We had a big wooden barrel and in that barrel we usually kept five or six 

rattlesnakes.” - Walker MacNeil (Okanagan Historical Society Reports, 1983).  

There are also historical records of over 4,000 rattlesnakes exterminated by Austin 

(Augustine) Mackie from the early 1920s into the 1960s (Okanagan Historical Society 

Reports, 1965) in a personal vendetta caused by the death of a childhood friend from a 

rattlesnake bite. The total number of rattlesnakes found by Macartney during his mark-

recapture study (1985) were well below the numbers estimated to have been killed by Mackie 

over multiple decades. It is possible that rattlesnake populations in the area had begun to 

rebound from large-scale persecution by the time Macartney had conducted his study, further 

highlighting the need for periodic assessments to document long-term population trends.  

 Until recently, Macartney’s study represented the only empirical data on rattlesnake 

populations in British Columbia; it has been influential in informing conservation and 

management strategies at the provincial and federal level (COSEWIC, 2015). Now, over 35 

years later, these data are important as a historical baseline for understanding how 

populations have changed over time.  
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Study Site 

Kalamalka Lake Provincial Park (KLPP) and the adjacent Coldstream Ranch are 

located in the North Okanagan Valley, approximately 11 km south of the city of Vernon and 

bordering the District of Coldstream. The study area I surveyed encompassed approximately 

1150 hectares divided between KLPP and Coldstream Ranch (Fig. 1.2). The study area 

within KLPP (3,218 hectares total) covers approximately 760 hectares bordered to the north 

by the district of Coldstream, to the east by Kalamalka Lake, to the west by the Coldstream 

Ranch boundary, and to the south by the forested edge of the lower grassland habitat 

(hereafter referred to as ‘Park’). The Coldstream Ranch study area covered approximately 

390 hectares and is bordered to the north by Coldstream Creek, to the east by KLPP, and to 

the east and south by the forested edge of lower grassland habitat (hereafter referred to as 

‘Ranch’). Figures 1.3 and 1.4 provide a comparison of the average monthly temperature and 

precipitation during my study and during the original Macartney study to a 30-year norm 

(1981 – 2010). 

 Ecologically, the study area is located within the North Okanagan Basin Ecosection 

and contains five biogeoclimatic subzone and variants as defined by the Province of BC 

(Meidinger and Pojar, 1991; British Columbia Parks, 2019) 

- IDF dm1 (Interior Douglas-fir Dry Mild) 

- IDF xh1 (Very Dry Hot) 

- MS dm1 (Montane Spruce Dry Mild) 

- ICH mk1 (Interior Cedar Hemlock Moist Cool) 

- IDF mw1 (Interior Douglas-fir Moist Warm) 

 Due to the variety of available habitat, the area is home to a wide diversity of 

vertebrate and invertebrate species, including 19 ecological communities considered ‘at-risk’ 

in British Columbia (British Columbia Parks, 2019).  

The Park site contains an unpaved access road for a lakeshore community (Cosens 

Bay Road; Fig. 1.5) that bisects the natural landscape near the delineation of Kalamalka Lake 

Provincial Park and Coldstream Ranch. Within Kalamalka Lake Provincial Park are >50 

kilometers of popular, year-round hiking, horse-riding, and mountain biking trails. These 

trails are dispersed throughout the provincial park and lead to several day-use picnic areas, 
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beaches, and pet-areas (Fig. 1.6). Data from traffic counters at three main parking areas 

within Kalamalka Lake Provincial Park suggest a conservative estimate of average monthly 

human use to be 32,600 visitors during the active season for rattlesnakes (April-October; Fig. 

1.7). The rattlesnake population in this area is partitioned into two den complexes separated 

by Cosens Valley and Cosens Bay Road (Fig. 1.5): the Kal Lake Park Den Complex and 

Coldstream Ranch Den Complex. The entirety of the Kal Lake Park Den Complex lies within 

the boundaries of KLPP and contains dens of varied usage, one previously unidentified den 

site, and other important snake areas (i.e. solariums, basking sites, shedding sites, and 

rookeries). The majority of dens and important snake features within the Kal Lake Park 

complex are located in close proximity to trails and high-use park areas, some within a few 

meters of major trails. The majority of the Coldstream Ranch Den Complex is situated within 

Coldstream Ranch lands outside of the Park boundary, with one exception. Despite being 

within the Park boundary, the geographical position, barriers to dispersal, and observational 

evidence suggest this den is more contiguous with the Coldstream Ranch complex than the 

Kal Lake Park complex.   

The situation at Macartney’s study site in the North Okanagan lends itself perfectly to 

reassessment of rattlesnake populations. At roughly the time that Macartney’s (1985) study 

concluded, the populations in the Kalamalka region were divided into two spatially 

segregated and contrasting management types: a Provincial Park accommodating recreational 

activities, and an active cattle ranch. Individual impacts from recognized threats would 

presumably have been negligible at first, however, over the last 35 years the landscape (and 

those who use it) has changed markedly. Most notably, the Park site now has substantial 

human presence across the landscape, and the effects of bordering an urban area are more 

noticeable when compared to the Ranch site. Recent investigation into the genetic relatedness 

of rattlesnake populations in British Columbia have suggested that rattlesnake denning 

populations between Kalamalka Lake Provincial Park and Coldstream Ranch are panmictic 

(Schmidt et al. 2020), despite obvious barriers to gene flow on the landscape. Thus, any 

differences detected in the demography and morphometry between the sites will likely be due 

to the effects of site-specific pressures, rather than variability within the gene pool.  
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FIGURE 1.2. Entire study area (~1075 ha) showing the area surveyed within Kalamalka Lake Provincial Park site (Park; ~710 ha; 

White) and the Coldstream Ranch site (Ranch; ~365 ha; Black). 
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FIGURE 1.3. Mean monthly temperatures during the active season for Western Rattlesnakes (Crotalus oreganus) on Coldstream Ranch, 

B.C. during the previous study (1981 – 1983), and this study (2018 – 2020) compared to the historical 30-year mean (1981 – 2010). 

Data from Environment and Climate Change Canada. 
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FIGURE 1.4. Mean monthly precipitation on Coldstream Ranch, B.C. during the previous study (1981 – 1983), and this study (2018 – 

2020) compared to the historical 30-year mean (1981 – 2010) during the active season for Western Rattlesnakes (Crotalus oreganus). 

Data from Environment and Climate Change Canada.
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FIGURE 1.5. Aerial photo of Cosens Valley in Kalamalka Lake Provincial Park, British 

Columbia, Canada taken looking north-east from within Kalamalka Lake Provincial Park. 

Cosen’s Bay Road (centre) is an unpaved access road for a lakeshore community (photo: 

M.C.P. Atkins).  
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FIGURE 1.6. Aerial photo of ‘Rattlesnake Point’ in Kalamalka Lake Provincial Park, British 

Columbia, Canada showing one of the recreational trails within the park (photo: M.C.P. 

Atkins).  
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FIGURE 1.7. Mean monthly number of visitors to Kalamalka Lake Provincial Park during the active season for Western Rattlesnakes 

(Crotalus oreganus) using data from traffic counters from 2014 – 2018 at three main parking areas (British Columbia Parks, 

unpublished data). Each vehicle was assumed to contain two people. These data largely underrepresent actual visitorship as they 

exclude people who arrive by means other than motor vehicle and do not include another popular parking area.
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 A concurrent inventory of small mammal communities across the north Okanagan 

valley (Gamble and Larsen, unpublished data) provided cursory data on the relative 

abundance of prey.  Two traplines were established within Kalamalka Lake Provincial Park 

and one trapline within Coldstream Ranch (Fig. 1.8). Transects of Longworth-style live traps 

15 m apart were laid across each landscape, with pre-baiting of traps conducted for three 

consecutive nights, followed by three nights of trapping (Aug 6-8, 2019).  All trapped 

animals were marked using Monel no. 1 eartags and released at their point of capture.  

The highest relative abundance of small mammals was recorded on trapline 2 (Fig. 

1.8) within the Park site, and the lowest relative abundance was recorded on trapline 3 (Fig. 

1.8) on the Ranch site. A total of 94 Deer Mice (Peromyscus maniculatus), 19 Great Basin 

Pocket Mice (Perognathus parvus) and 2 Meadow Voles (Microtus pennsylvanicus) were 

recorded in the area (Table 1.1). To appropriately discern relative prey abundance for 

rattlesnakes, additional relative abundance data connected to specific high-use habitat areas 

for rattlesnakes is necessary. 
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TABLE 1.1. Small mammal relative abundance data (Gamble and Larsen, unpublished data) collected August 6 – 8, 2019 on two 

traplines within Kalamalka Lake Provincial Park (Trapline 1 & 2) and one trapline in Coldstream Ranch (Trapline 3). Data on relative 

abundance and mean weight (wt) ± standard deviation (SD) shown for Deer Mice (PIMA; Peromyscus maniculatus), Great Basin 

Pocket Mice (PEPA; Perognathus parvus), and Meadow Voles (MIPE; Microtus pennsylvanicus).  

 

Trapline PIMA/trap Mean PIMA wt ± SD PEPA/trap Mean PEPA wt ± SD MIPE/trap Mean MIPE wt ± SD  

Trapline 1 0.6 17.6g ± 2.6 0.27 17.7g ± 2.8 - - 

Trapline 2 1.37 18.4g ± 2.6 - - 0.067 n/a 

Trapline 3 0.37 17.4g ± 2.6 - - - - 
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Figure 1.8. Trapline locations for a concurrent small mammal relative abundance assessment (Gamble and Larsen, unpublished data) 

in Kalamalka Lake Provincial Park (White; 1 & 2) and Coldstream Ranch (Black; 3). Data was collected from Aug 6 – 8, 2019.  
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Research Questions and Methods 

To quantify population changes of Western Rattlesnakes in British Columbia over the 

last 35+ years, I conducted a mark-recapture based population assessment in the North 

Okanagan within Kalamalka Lake Provincial Park and the adjacent Coldstream Ranch for 

comparison with data from the previous study (Macartney, 1985). I sampled rattlesnakes at 

overwintering dens during Spring 2018, Autumn 2018, Spring 2019, Autumn 2019, and 

Spring 2020 (5 sampling periods) to collect demographic and morphometric data on the 

population that closely followed the methodology within Macartney (1985). Based on 

observations during our first field season, I also conducted a behavioural study of animals 

from both sites to determine whether changes on the landscape were associated with 

behavioural shifts. This work provides contemporary empirical data on the population size 

and structure for the rattlesnake population previously surveyed by Macartney (1985) and 

allows for temporal and spatial comparisons within this population over time.  

The specific questions I address in this thesis are: 

1. How have rattlesnake population sizes and size-class distributions in the North 

Okanagan changed over the last 35+ years? Chapter 2 

2. Are the changes in population sizes and size-class distributions different depending 

on landscape type (Provincial Park versus Cattle Ranch)? Chapter 2 

3. Is a high-level of human visitation associated with changes in rattlesnake defensive 

behaviour? Chapter 3 

 The main tools I used in collecting demographic data for this study were the same 

mark/recapture techniques used by Macartney, with some modifications (see Chapter 2). In 

addition to recording recaptures of individually-tagged snakes, I also collected data on 

length, body mass, and gender. I assessed the differences in defensive behaviour of the 

snakes using their propensity to rattle as a metric in field experimental enclosures (see 

Chapter 3). 

 I also conducted telemetry on 21 animals, to investigate habitat use both within and 

outside the immediate study area (Atkins, unpublished data). These data contributed to 

delineating the effective population area (Chapter 2). Telemetry data from gravid female 
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snakes also provided data on rookery use for a coincidental study (Eye, MSc. Thesis, in 

prep.) 
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CHAPTER 2 

THIRTY-FIVE YEARS ON THE NORTHERN RANGE: CHANGES IN 

SUBPOPULATIONS OF WESTERN RATTLESNAKES (CROTALUS OREGANUS) IN 

BRITISH COLUMBIA 

INTRODUCTION 

Crafting effective conservation plans requires a strong understanding of the dynamics 

of populations (Lindenmeyer et al., 2012), along with a way to associate those with different 

landscape-level effects. Such information is especially important for quantifying species’ 

responses to ecological, natural, and anthropogenic disturbance (Coulso et al., 2001; Jones et 

al., 2017). Unfortunately, the majority of ecological studies represent snapshots, or short-

term glimpses of populations, and long-term continuous monitoring is rare despite being 

argued as necessary (White, 2019). Given this, opportunities to repeat historic studies, or 

periodically re-assess populations, are particularly valuable and help avoid the shifting 

baselines syndrome (SBS) (Liken, 1985; Pauly, 1995; Jackson, 1997; Bohnsack, 2003; Folk 

et al., 2004; Huitric, 2005; Papworth et al., 2009; Soga and Gaston, 2018).  

The SBS involves accepting contemporary data as a standard for populations, without 

considering historic baselines. This can lead to ‘generational amnesia’ (Papworth et al., 

2009) whereby the experience and knowledge of past mangers or knowledge holders is not 

passed onto future generations, thus re-setting perceptions of normality while forgetting past 

conditions (Pauly, 1995). The widespread acknowledgment of this phenomenon is rooted in 

fisheries and marine ecosystems, though in recent decades many studies identifying shifting 

baselines have arisen that span taxa, disciplines, and ecosystems (Baum and Meyers, 2004; 

Newsome et al., 2007; Pinnegar and Engelhard, 2008; Rittenhouse et al., 2010; Turvey et al., 

2010; Vera, 2010; Whipple et al., 2011; Bender et al., 2013; Santini et al., 2017). 

Identifying shifting baselines in marine systems has been aided by commercial 

harvest records, but similar robust datasets are sparse for herpetofauna where relatively fewer 

species are harvested commercially; further, herpetofauna may demonstrate patchy 

distributions, cryptic colouration and behaviours, and knowledge gaps on basic life history 

and ecology still exist (Zug et al., 2001; Todd et al., 2010). Thus, gathering data on reptile 
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populations over time is essential for detecting population declines and disentangling natural 

versus human-caused fluctuations in the future (Cody, 1996; Gibbones et al., 2000).  

Very little is known about how populations of Western Rattlesnakes (Crotalus 

oreganus) change over time and space, and individual populations are reported to be likely 

overestimated in many areas (COSEWIC, 2015). Western Rattlesnakes in Canada represent 

the northern periphery for the species, and a northern extreme for rattlesnakes in general (Fig. 

1.1). The first and (until recently) only detailed Canadian population study of the species was 

conducted by Macartney from 1981 – 1983 in the Okanagan Valley, over 35 years ago 

(Macartney, 1985; Macartney, 1989; Macartney and Gregory, 1988; Macartney and Gregory, 

1990). More recently, other studies have provided demographic data on other populations in 

British Columbia (Maida et al., 2018; Winton et al., 2019), as well as insight into other 

aspects of the species’ ecology and conservation (Lomas et al., 2015; Eye et al., 2017; 

Winton et al., 2018; Lomas et al., 2019; Winton et al., 2019; Schmidt et al., 2020; Harvey 

and Larsen, 2020). However, data from the Macartney study provides the only benchmark to 

examine temporal changes in rattlesnake populations in the north. This is of particular 

importance given the species is considered threatened in Canada, and the region where the 

majority of Western Rattlesnakes occur is subject to one of the fastest rates of urban and 

agricultural growth in the country (Okanagan Valley Economic Development Society, 2013; 

Statistics Canada, 2014, Maida et al., 2018).  

To assess historical changes in Western Rattlesnakes, we replicated the Macartney 

(1985) study at the same locations and overwintering dens, closely following his 

methodology and sampling effort. Macartney conducted his work in an area that included 

both a fledgling provincial park and an adjacent private cattle ranch, although leading up to 

his study the entire land area was managed jointly for cattle. Within a year of the cessation of 

Macartney’s field work, management of the park shifted to exclude cattle, while becoming a 

popular destination for recreationists, whereas the cattle ranch has remained largely 

unchanged and void of people. This situation thus has created a unique natural experiment to 

assess population changes over time and space. Herein we examine how the population of 

rattlesnakes has changed at the Macartney site over the past 35 years, and whether 
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differences exist correlated with the two landscapes. We also compare our recent estimates of 

rattlesnake density to those obtained from other sites in the region. 

MATERIALS AND METHODS 

Study Sites 

Our field work took place near the municipality of Vernon (50.2670° N, 119.2720° 

W), within the northern extent of the Okanagan Valley in British Columbia. Rattlesnakes in 

this area den communally in rocky crevices, usually on south-facing slopes. This life-history 

trait enables a relatively large numbers of animals to be sampled in each local populations. 

Emergence from dens (egress) occurs in late March through April, the animals disperse 

throughout the landscape to feed and reproduce, and return to the dens (ingress) in late 

September-early October. See Chapter 1 for additional details on the climate and 

biogeography of the study area.  

We conducted mark-recapture work between April 2018 and May 2020 within the 

two neighbouring sites, namely Kalamalka Lake Provincial Park (50.2043° N, 119.2800° W 

– ‘Park’) and the adjacent Coldstream Ranch (‘Ranch’) (Fig. 1.2). Both sites are 

characterized by a mosaic of grassland and forest patches dominated by blue-bunch 

wheatgrass (Psuedoregneria spicatum), various fescue species (Festuca spp.), Ponderosa 

pine (Pinus ponderosa), Western Redcedar (Thuja plicata), and Douglas-Fir (Psuedotsuga 

menziesii) surrounded by rolling hills and steep bluffs. Barbed wire fencing excludes cattle 

from the Park but poses no obstacle to the snakes, although there exists an unpaved road 

bisecting the sites that may act as a partial barrier as snakes may avoid the road or may be 

killed when crossing. Mark-recapture (this study) and radio-telemetry data (Atkins, 

unpublished data) suggest inter-site movements by snakes are infrequent, although Schmidt 

et al. (2020) found no significant genetic differences between animals drawn from two dens, 

one within the park and one within the cattle ranch.  

Kalamalka Lake Provincial Park is a provincially-designated protected recreational 

area that receives an average 32,600 visitors per month during the active season (April-

October) for rattlesnakes (Fig. 1.7; BC Parks, unpublished data) and contains >50 kilometers 

of popular, year-round hiking, horseback riding, and mountain biking trails. The Ranch site is 
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located on Coldstream Ranch, an active cattle grazing operation that prohibits access by the 

public. A robust assessment of grazing intensity within the Ranch landscape and vegetation 

cover differences between the sites was beyond the scope of this study. Cattle from the 

Ranch are ‘free-ranging’ for 4 weeks in May and 6 weeks in October/November, or 

approximately 3.75 AUM per hectare (1 AUM = animal unit/month, equivalent to the forage 

removed by one 454 kg cow or cow-calf pair in one month - T. Osborn, Coldstream Ranch 

(2002) ltd., personal communication). For the remainder of the year, cattle are restricted to 

feed-lots and pastures outside of the study area.  

Sampling Procedure 

We collected data between April and October in 2018 and 2019, and from April 3 to 

May 5 in 2020. The active season was divided into two periods for analysis, spring (April 1 – 

June 15) and fall (June 15 – October 15), for a total of five sampling periods. All snakes were 

captured, processed, and released in the field at their capture location. In each spring and fall 

sampling period, we visited all dens described by Macartney (1985) within our study sites. In 

total, Macartney surveyed 16 independent dens, 6 of which we excluded early on due to 

negligible snake counts (< 5 individuals), safety concerns, and/or accessibility. Thus, our 

study was able to directly compare data from 10 dens (Park = 5, Ranch = 5) surveyed by 

Macartney; we also included a previously undescribed and well-populated den on the Park 

site, for a total of 11 dens (Table 2.1; Park = 6, Ranch = 5). Data from the previous study 

included neonatal animals that were born and processed in captivity. To avoid issues with 

inflated proportions of juvenile animals in the historical dataset, we removed data from 

animals born in captivity from the dataset.  
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TABLE 2.1. A comparison of Western Rattlesnake dens surveyed by Macartney (1985) and 

the present study in Canada. Multiple dens are listed together as a den complex if in close 

proximity to each other and deemed to be contiguous. Dens marked with a ‘’ were included 

in analysis. Dens marked with ‘*’ were deemed largely abandoned or extirpated.  

  

Site Den Macartney (1985) Atkins (2020) 

Park East Den/Den 21/Den 22   

 Den 14   

 Den 2/4/23/24   

 Den 5/6/6a/6b   

 Den 7   

 Den 3  * 

 Restoration  * 

 Beach House   

Ranch Den 8/13a   

 Den 9/10/11   

 Den 17   

 Den 16   

 Eyrie Den  * 

 Den 15   

Off-Site Den 27   

 Den 28   

 Beacon Den   
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 Captured rattlesnakes were implanted with sterile passive integrated transponder 

(PIT) tags (Biomark Model TX1411SSL; Biomark, Boise, Idaho, USA) for individual 

recognition. We measured snout-vent length (SVL) using the tube-restraint method (Murphy, 

1971), which is now considered safer for both animals and handlers than the noose-stretch 

method (Gregory, 1989); our field tests showed no appreciable differences in measurements 

obtained using the two different techniques (Appendix A; Atkins and Larsen, 2020). We also 

recorded weight (g) and sex for each individual (see Macartney and Gregory, 1988). All 

individuals were processed on site and released immediately afterwards.  

 Following Macartney (1985) we intensively collected snakes at den sites during 

spring egress and fall ingress. Den sites were visited at least twice per week, and this rate was 

increased to every second day during peak periods of egress/ingress. In general, egress 

tapered substantially by early-mid May, and afterwards the majority of snakes were 

encountered away from dens, with only a rare sighting of a snake occurring at the dens into 

June of each year. The arrival of snakes back at the dens during ingress was not substantial 

until early- to mid-September. All told, we are comfortable that our field methods closely 

paralleled those used by Macartney (1985), given the senior author on this paper served as a 

field assistant on the original project. Further corroboration was provided through a site visit 

by Macartney in 2019.  

Statistical Analyses 

We estimated population size for five capture periods for both the previous study 

(1981 – 1983; Macartney, 1985) and this study. Raw data from the Macartney study were 

digitized from original field records and analyzed in the same manner as data from this study 

to allow for direct comparisons. Analyses were conducted using the Rcapture package 

(Baillargeon and Rivest, 2007) in R (R Development Core Team, 2020). We ran an open-

population mark-recapture model based on a Jolly-Seber log-linear approach (Cormack, 

1985; 1989) for the total population (both sites combined), as well as the Park and Ranch 

sites independently. We assessed model fit via χ2 goodness of fit tests and visual inspection 

of the Pearson residuals and capture frequency. In instances of poorly-fitted data we limited 

frequencies of capture within the analyses and/or removed data with high residual values (see 

Baillargeon and Rivest, 2007; Maida et al., 2018). We produced population estimates and 
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assessed morphometric data for the entire population (all age classes) and for adults only (≥ 

540 mm SVL; Maida et al., 2018) to allow direct comparisons with other recent population 

estimates in the region (Maida et al., 2018; Winton et al., 2019). We assessed morphometric 

data for adult males and females separately as rattlesnake reproductive ecology greatly 

affects the behaviour, growth, and feeding ecology of female rattlesnakes (Macartney and 

Gregory et al., 1988; Graves and Duvall, 1993).  

Concurrent to this study we (Atkins and Larsen, unpublished) used radio-telemetry to 

track the locations of 21 rattlesnakes over the active season in 2019. Using the aggregated 

movements from telemetry data in Garmin BaseCamp (version 4.6.2, 2016) and summer 

captures of non-telemetered (but marked) snakes, we created minimum-convex polygons 

(MCPs) to calculate the population home range area for rattlesnakes on the Park and Ranch 

sites (Row et al., 2006; Winton, 2019). We used these estimates with our population 

estimates to determine density for both the Park and the Ranch combined and each site 

separately. We applied our current estimate of population home ranges to our analysis of the 

Macartney (1985) data as the previous study did not record capture locations and contained 

minimal telemetry data.  

RESULTS 

We made 1264 captures of 702 individual Western Rattlesnakes over the course of 

this study. This included 972 captures of 511 adults (Table 2.2). Macartney’s study produced 

2704 captures of 1387 individual rattlesnakes, with 1797 captures of 845 adults (Table 2.2). 

In both studies, later sampling periods contained relatively high proportions of recaptured 

individuals (Table 2.2).  
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TABLE 2.2. Tabulated capture data for Western Rattlesnakes (Crotalus oreganus) captured during the Macartney (1985) study (1981-

1983) and the current study (2018-2020). New individuals represent first time captures of previously unmarked individuals. Total 

Number of Captures includes all individuals capture in the sampling session, including recaptures. Proportion New in Sample is the 

number of New Individuals divided by the Total Number of Captures.  

  Total Population Adult Population 

  

Period 

 

New 

Individuals 

 

Total Number 

of Captures 

 

Proportion 

New in Sample 

 

New 

Individuals 

 

Total Number 

of Captures 

 

Proportion 

New in Sample 

 Spring 1981 246 251 0.98 147 149 0.99 

 Fall 1981 351 549 0.64 170 294 0.58 

 Spring 1982 257 457 0.56 186 315 0.59 

 Fall 1982 313 749 0.42 185 527 0.35 

 Spring 1983 220 698 0.32 157 512 0.31 

 Total Study 1387 2704 0.51  845 1797 0.47 

 Spring 2018 169 207 0.82 126 153 0.82 

 Fall 2018 157 281 0.56 115 224 0.51 

 Spring 2019 186 354 0.53 116 260 0.45 

 Fall 2019 94 214 0.44 65 157 0.41 

 Spring 2020 97 208 0.47 89 178 0.50 

 Total Study 702 1264 0.56 511 972 0.53 
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Population and Density Estimates 

Table 2.3 shows our population estimates, along with those calculated using the raw 

data drawn from Macartney (1985). We estimated a mean decline of 40% (29-50%) for the 

combined population over both sites; the population within the Park site declined by 50% 

(35-63%), and the populations within the Ranch site declined by 31% (19-42%) (Fig. 2.1a). 

Using only data on adult snakes, we estimated a decline of 22% (10-33%); the adult 

population within the Park site declined by 28% (7-47%), and the corresponding decline in 

the Ranch site was 23% (10-34%) (Fig. 2.1b). We assessed population density (Table 2.3) 

using an estimated population home range of 7.6 km2 for the Park site, and 3.9 km2 for the 

Ranch site, for a combined home range estimate of 11.5 km2   

Population Structure 

 Size-class distributions from the present study (♂♂ n = 292, x̄ = 64.6 cm, SD = 18.2; 

♀♀ n = 312, x̄ = 57.2 cm, SD = 15.3) were significantly different for both sexes than those 

from the Macartney study (♂♂ n = 689, x̄ = 61.1 cm, SD = 22.8; ♀♀ n = 668, x̄ = 56.2, SD = 

19.0) according to Kolmogorov-Smirnov tests (♂♂ D = 0.15, P < 0.001; ♀♀ D = 0.13, P = 

0.002; Fig. 2.2). Compared to the Macartney study, the proportion of juveniles in the 

population decreased by 33% and 14% for males and females, respectively.
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TABLE 2.3. Summary and comparison of open-population mark-recapture models using historical (Macartney, 1985 – data collected 

during 1981 - 1983) and current data (2018 – 2020) for subpopulations of Western Rattlesnakes (Crotalus oreagnus) within 

Kalamalka Lake Provincial Park (Park), Coldstream Ranch (Ranch), and both sites combined (Both) near Vernon, British Columbia. 

Separate estimates are provided for all snakes encountered and only those considered adults (≥ 540 mm SVL). Shown are Ntot (total 

population estimate), standard error (StE), 95% confidence intervals (95% CI) and model fit (χ2) results. We calculated the range of 

decline using absolute minimum and absolute maximum estimates from 95% confidence intervals.   

Population Subset Site & Time Period Ntot StE 95% CI χ2 Density 

(snakes/km2) 

 

Range of Decline  

Total Population Park 1983 937.96 37.17 72.85 0.42 123  

35 – 63%   Park 2020 470.18 47.73 93.55 0.34 62 

 Ranch 1983 856.38 26.22 51.38 0.23 220  

19 – 42%  Ranch 2020 591.64 31.65 62.03 0.23 152 

 Both 1983 1776.62 44.28 86.79 0.27 154  

29 – 50%  Both 2020 1066.27 66.56 130.45 0.10 93 

Adult Population Park 1983 445.31 15.23 29.84 0.22 59  

7 – 47%  Park 2020 320.28 34.24 67.11 0.13 42 

 Ranch 1983 506.46 13.15 25.77 0.12 129  

10 – 34%  Ranch 2020 391.37 19.86 38.95 0.19 100 

 Both 1983 963.96 17.23 33.77 0.27 84  

10 – 33%  Both 2020 750.99 43.79 85.83 0.09 65 

 



43 

 

 

FIGURE 2.1. Temporal and spatial comparisons of Western Rattlesnake (Crotalus oreganus) 

population estimates ± 95% CI from this study and historical data (Macartney, 1985) for the 

entire population (a) and the adult (≥ 540 mm SVL) population (b) within Kalamalka Lake 

Provincial Park (Park), Coldstream Ranch (Ranch), and for both sites combined (Both).



44 

 

 

 

FIGURE 2.2. Size-class capture frequency histograms of male and female Western 

Rattlesnakes (Crotalus oreganus) captured in this study (bottom) and by Macartney (1985) 

(top). Size-classes (Snout-vent length) binned at 2 cm intervals.  
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Table 2.4 summarizes changes in mean length, weight, and body condition of adult 

male and female rattlesnakes by site between the two studies. On average, rattlesnakes 

encountered on the Park site in the present study were significantly heavier than those found 

by Macartney (♂♂ t = -5.3, df = 183, P < 0.0001; ♀♀ t = -5.3, df = 203, P < 0.0001; Fig. 

2.3a, b), while only females displayed lower average SVL (♂♂ t = -0.2, df = 269, P = 0.81; 

♀♀ t = 2.4, df = 268, P = 0.017; Fig. 2.3c, d) both sexes displayed a substantial increase in 

body condition over time (♂♂ t = -7.2, df = 184, P < 0.0001; ♀♀ t = -7.3, df = 203, P < 

0.0001; Fig. 2.3e, f). On the Ranch site, snakes encountered in the present study showed no 

difference in average weight compared to the Macartney study (♂♂ t = -0.97, df = 241, P = 

0.33; ♀♀ t = -1.50, df = 265, P = 0.14; Fig. 2.3a, b), but both sexes were significantly shorter 

(♂♂ t = 4.9, df = 375, P < 0.0001; ♀♀ t = 3.13, df = 348, P = 0.002; Fig. 2.3c, d) and showed 

a significant increase in body condition (♂♂ t = -2.8, df = 241, P = 0.005; ♀♀ t = -3.20, df = 

265, P = 0.002; Fig. 2.3e, f). 
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TABLE 2.4. Comparison of mean snout-vent length (SVL), weight, and body condition for adult Western Rattlesnakes (Crotalus 

oreganus) captured in Kalamalka Lake Provincial Park (Park) and Coldstream Ranch (Ranch) using data from this study (2018-2020) 

and a historical study (Macartney, 1985; data collected 1981-1983). Statistically significant changes marked with ‘*’. 

Site Gender, Year Mean SVL (cm) ± SD Mean Weight (g) ± SD Mean Body Condition (g/cm) ± SD 

Park ♂♂ 1983 72.9 ± 12.6 208.4 ± 125.8 2.7 ± 1.2 

 ♂♂ 2020 73.3 ± 10.7 320.7 ± 158.7 4.2 ± 1.6 

 % ↑1% ↑35%* ↑36%* 

     

 ♀♀ 1983 70.2 ± 8.6 192.0 ± 91.7 2.7 ± 1.0 

 ♀♀ 2020 67.7 ± 7.2 264.3 ± 101.2 3.8 ± 1.3 

 % ↓4%* ↑27%* ↑29%* 

     

Ranch ♂♂ 1983 80.4 ± 12.8 324.3 ± 167.0 3.9 ± 1.5 

 ♂♂ 2020 74.0 ± 11.6 346.5 ± 177.5 4.5 ± 1.7 

 % ↓8%* ↑6% ↑13%* 

     

 ♀♀ 1983 71.9 ± 8.5 249.4 ± 103.4 3.3 ± 1.1 

 ♀♀ 2020 69.2 ± 7.13 268.5 ± 103.1 3.8 ± 1.2 

 % ↓4%* ↑7% ↑13%* 
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FIGURE 2.3. Temporal comparisons of mean male and female mass (a, b), length (SVL; c, d), 

and body condition (e, f) for Western Rattlesnakes (Crotalus oreganus) captured during this 

study and during a historical study (Macartney, 1985) within Kalamalka Lake Provincial 

Park (Park) and Coldstream Ranch (Ranch). 
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DISCUSSION 

 This study provides insight into temporal and spatial differences in population 

numbers, size-class distributions, size, and body condition of rattlesnakes at the northern 

extent of their range. Population declines were more drastic when considering the entire 

population versus solely the adult population. Furthermore, the population within the Park 

site declined considerably more than the population within the Ranch site and three dens 

appear to have been abandoned or extirpated since the Macartney study. Further study is 

necessary to discern whether the cause of these population declines is rooted in natural 

fluctuations or anthropogenic pressures, and to better understand natural cycles of rattlesnake 

demographic trends.  

 The apparent overall decrease of rattlesnakes detected over the last 35 years is 

disconcerting, given the study area is composed of two sites, namely a protected area and a 

landbase largely off limits to human activity save for limited cattle grazing. In Canada, 

Western Rattlesnakes have been listed as ‘threatened’ (COSEWIC, 2015) due to suspected 

declines of 30% or greater over three generations (~45 years; Maida et al., 2018). At least at 

our study site, this level of decline has been observed and possibly surpassed.  

 Changes to population structure and morphometrics since the Macartney study may 

provide some insight into the population decline. The size-class distribution of both males 

and females in our sample was significantly different from that of Macartney, with a lower 

proportion of juveniles found during our study. The higher proportion of juveniles in 

Macartney’s data may be due, at least in part, to more directed sampling for neonatal animals 

focusing on reproductive ecology when compared to this study. Alternatively, a lower 

proportion of juveniles in the population also may suggest decreases in adult reproductive 

output and/or juvenile survivorship that may be reflected in the more drastic declines 

observed when juveniles were included in the overall population estimate.  

Mean snake mass and body condition appeared to increase substantially in the Park 

site where population estimates declined relatively more. This is at odds with data presented 

by Lomas (et al., 2015) for the south Okanagan valley, where Western Rattlesnakes in 

human-disturbed habitats showed lower body condition and reduced weight gain over the 

active season when compared to snakes occupying areas largely devoid of humans (Lomas et 
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al., 2015). Given that the population has apparently declined since the previous study, 

intraspecific competition for resources may be lower among snakes reaching larger sizes, 

enabling the animals to acquire more mass. This also may explain why we observed more 

marginal increases in body condition and mass for snakes on the Ranch site where declines 

were less severe. A decrease in mean SVL for females, but not for males, remains puzzling. 

Females may be reproducing at smaller lengths, thereby allocating more energy to the 

accumulation of fat reserves for gestation as opposed to linear growth compared to females 

from the Macartney era. Preliminary data suggests relative prey abundance is marginally 

different across the landscape (see Chapter 1), however, further investigation into growth 

rates, reproduction, and prey availability may help enlighten the above phenomena. 

 Is it likely that the differences detected between the two sites in this study are directly 

attributable to land management? A reoccurring problem with so-called ‘natural experiments’ 

is that sample sizes often can be reduced to only one ‘experiment’ and one ‘control’. In this 

study, we only have one site in each of our two categories of land management (Park versus 

Ranch). It would be presumptuous to conclude that the two management regimes are directly 

responsible for the differences in rattlesnake populations that we observed herein. More 

information is clearly needed on how juxtaposed rattlesnake populations vary 

demographically. However, the close proximity of the two areas in this study, and the fact 

that historic baseline data exists does suggest the differences are attributable to site-specific 

conditions that may or may not be directly related to the overarching land use over the past 

35 years. While the Ranch landscape has remained largely unchanged since the Macartney 

study, the exclusion of cattle within the Park area is coupled with an increase in human 

visitation. In addition to differences in population declines, rattlesnakes also display 

significant differences in defensive behaviour between the two sites that may be attributable 

to the relative abundance of humans or cattle (Chapter 3). Along with more human foot-

traffic, this increased visitorship also has resulted in the widespread establishment of invasive 

plants, to the extent that many areas in the Park are completely devoid of most native species 

(BC Parks, 2019). How this may affect the prey base of the snakes is unclear. Additionally, 

vehicle traffic along Cosens Bay Road (Fig. 1.5) may contribute to mortality within the Park, 

both directly and indirectly, as even small roads have been shown to impact dispersal and 

gene flow in snakes (Clark et al., 2010); although more data on the level of road mortality in 
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the Park is needed to affirm this assumption. However, road mortality from a low-traffic 

backroad further south in the region to be removing 6.6% of the Western Rattlesnake 

population per year, leading to a projected 97% decrease in mean population size over 100 

years (Winton et al., 2019). Regardless, our data argue there may be risk in assuming 

protected areas inherently provide ‘anchors’ in the protection of species, especially if other 

uses of the landscape are intertwined with a conservation interest.  

 Despite the declines suggested in this study, the estimated density of adult 

rattlesnakes across our study sites still is substantially higher than that reported at sites a 

short distance away in the same region of the province. Our estimate of 84 animals/km2 is 

over 30% higher than that reported in a more xeric site (~225 km due S, 58/km2; Maida et al., 

2018), and 60% greater than recent estimates at another location marginally closer to our site 

(~140 km due S, 35/km2; S. Winton, unpublished data). Because these studies used near-

identical methods to those used by us, they suggest substantial variation in densities may 

exist in the northern portion of this snake’s distribution. These differences could be attributed 

to a variety of independent and synergistic factors including, climatic differences, prey 

availability, predator density, human development, road mortality, direct persecution, or 

more severe population declines in these other areas. Unfortunately, without historical 

baselines for these other populations, we cannot compare the relative rate of decline over 

time across the species’ range to disentangle these effects. All told, these results clearly 

highlight the pitfalls of using single point-source estimates of densities for status assessments 

or management.  

 Was the rattlesnake population during the Macartney study closer to a historic 

carrying capacity? Or, are we perhaps succumbing to the Shifting Baseline Syndrome by 

using the Macartney data as a base by which to draw comparisons with our more 

contemporary data? Without historical baselines antecedent to Macartney, we may never 

know. There is evidence to suggest that targeted persecution of rattlesnakes was 

commonplace from at least 1920-1970 (see Chapter 1). Perhaps the population already was 

degraded when Macartney began his study, and the population numbers we see today are a 

continuation of that. In any case, the data presented in this study draws attention to the 

ongoing declines in species, both those at-risk and those still considered common, and calls 
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for additional investigation to understand local pressures to wildlife populations to develop 

conservation measures that increase capacity for wildlife populations in our natural areas.  
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CHAPTER 3 

EVIDENCE OF INTRAPOPULATION SHIFTS IN RATTLESNAKE DEFENSIVE 

BEHAVIOUR ACROSS NEIGHBOURING HABITATS 

INTRODUCTION 

Protected areas are a key tool for sustaining wildlife and biodiversity. However, 

protected areas often have conflicts between conservation, human visitation, and recreation, 

and their effects on behaviour, distribution, and migratory pathways of many species 

(Sarmento and Berger, 2017). Even non-consumptive recreational activities may have 

profound effects on wildlife through both direct and indirect disturbance (McGowan et al., 

2014). Single and multi-purpose landscapes represent natural experiments for assessing how 

the behaviour of species shifts in response to the levels of human visitation resulting from 

different landscape use.  

The manner in which species perceive and respond to human presence varies 

tremendously with the level of human activity (Laundré et al., 2010). The importance of 

understanding these responses is clear in situations where direct contact between humans and 

animals can occur – particularly when those encounters pose a threat to one or both parties 

(e.g. large predators). Frequent human encounters can influence risk assessment and 

subsequent fight-or-flight decisions amongst wildlife if humans are perceived as a threat 

(Frid and Dill, 2002; Ohashi et al., 2013; McGowan et al., 2014). In time, repetition of 

relatively benign stimuli, such as a passing hiker, can lead to habituation; i.e. a decreased 

responsiveness by animals as a means to avoid costly responses that produce no benefit 

(Rankin et al., 2009; Blumstein, 2016). Habituation is of concern to wildlife managers and 

conservation biologists as such behaviour can lead to increased tolerance and closer contact 

with humans, or potential predators, without overt reaction (Herrero et al., 2005; Samia et al., 

2015; Blumstein, 2016).  

Variation in levels of tolerance demonstrated by habituated animals may be driven by 

other processes such as phenotypic sorting, behavioural plasticity, and natural selection 

(Lowry et al., 2013; Møller et al., 2015; Williams et al., 2020). Phenotypic sorting occurs 

when individuals settle in different habitats (or micro-habitats) based on each animal’s 
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tolerance to the local environments (Edelaar et al., 2008). For example, a higher abundance 

of bold versus shy birds may occur in urban environments (Clergeau et al., 2006; Croci et al., 

2008). Under natural conditions, behavioural plasticity allows an animal to adjust its 

behaviour to best suit the conditions of its environment and potentially increase its fitness 

(Lowry et al., 2013). However, animals that habituate to interactions with harmless humans 

are at higher risk to injury or death from hunters, poachers, resentful humans, or natural 

predators (Geffroy et al., 2015); this may be especially concerning for species-at-risk or those 

occupying areas with high levels of illegal harvest (Blumstein, 2016). Understanding how 

animal behaviour varies based on local landscape conditions, such as levels of human 

activity, is critical for developing effective conservation plans (Sarmento and Berger, 2017).  

The rattlesnake rattle is a novel trait, emerging only once in the evolutionary history 

of rattlesnakes (Klauber, 1956), and is absent in all of the >3,000 other snake taxa (Allf et al., 

2016), though other species display non-auditory tail vibration. The rattle produces an 

audible buzz between 2 – 20 khz (Fenton and Licht, 1990) and has been shown to be an 

effective warning signal to predators (Klauber, 1956; Greene, 1988; Prior and Weatherhead, 

1994; Allf et al., 2016). Tail vibration creating a buzzing rattle is a distinctive defensive 

adaptation that epitomizes rattlesnakes (Family Viperidae), even though the primary 

antipredator tactic of rattlesnakes is crypsis (Duvall et al., 1985). Tail vibration (and resultant 

rattling) in snakes is only expressed when threatened (Greene, 1988); thus rattling is an 

environmentally-induced trait and represents behavioural (or phenotypic) plasticity (Allf et 

al., 2016). When disturbed, rattlesnakes typically remain motionless or cease movement 

relying on camouflage to avoid detection (Duvall et al., 1985). At a certain level of 

disturbance, rattlesnakes will abandon crypsis and begin to rattle, move away, assume a 

strike position, and eventually bite (Kissner et al., 1997).  

There has been a longstanding assumption by biologists that rattlesnakes in disturbed 

areas are less likely to rattle than snakes in relatively pristine habitats, presumably caused by 

humans’ selective elimination of snakes that choose to rattle (Fitch, 1949; Klauber, 1956). 

Field studies have attempted to correlate rattling behaviour with snake sex, reproductive 

status, body size, body temperature, and exposure to handling (Kissner et al., 1997; Holding 

et al., 2014). Other studies have investigated the habituation potential of this behaviour in the 
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laboratory (Place and Abramson, 2008). To our knowledge, a population-level shift in 

rattling behaviour by rattlesnakes has never been quantified in the field, much less within 

context of human activity.  

In this study we examined the defensive behaviour (rattling) of Western Rattlesnakes 

(Crotalus oreganus) in British Columbia, Canada in two neighbouring subpopulations/areas 

subject to different levels of human presence. Prompted by ad hoc observations, we predicted 

that snakes within the area subject to high levels of human visitation would rattle less often 

and initiate rattling at shorter distances from an approaching human than snakes occupying a 

neighbouring site with negligible human activity. The close proximity (<1 km) of these two 

subpopulations allows comparison of the behaviours among individual rattlesnakes at a fine 

spatial scale, while controlling for other elements of population history (e.g. shared ancestry 

over time).  

Study Area 

All field work was conducted within Kalamalka Lake Provincial Park (50 °N, 119 

°W) and the adjacent Coldstream Ranch in the North Okanagan region of British Columbia, 

Canada. The site is characterized by a mosaic of grassland and forest patches dominated by 

blue-bunch wheatgrass (Agropyron spicatum), various fescue species (Festuca spp.), 

Ponderosa pine (Pinus ponderosa), Western Redcedar (Thuja plicata), and Douglas-Fir 

(Psuedotsuga menziesii) surrounded by rolling hills and steep bluffs. The two sites differ 

considerably in the presence of people. Kalamalka Lake Provincial Park (Fig. 1.2) is a 

provincially protected recreational area that receives an average of 32,600 visitors per month 

throughout the season when rattlesnakes are active (April through October) (Fig. 1.7; British 

Columbia Parks, unpublished data). The site contains an access road for a lakeshore 

community (Fig.1.5) and >50 kilometers of popular, year-round hiking, horseback riding, 

and mountain biking trails (Fig.1.6). The Ranch site (Fig. 1.2) is located on Coldstream 

Ranch, an active cattle grazing operation that prohibits access to the public but allows cattle 

to range freely in the open dry forest/grassland complex for 10 weeks of the year (see 

Chapter 1). The Ranch and Park sites are separated by barbed wire fencing that excludes 

cattle from the Park site but presents no barrier to snakes. Mark-recapture and radio-

telemetry work in the area (Atkins and Larsen, Thompson Rivers University, unpublished 
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data) suggests inter-site movements are infrequent. However, Schmidt et al. (2020) found no 

evidence of significant genetic differences between snakes from two dens, one from each 

sample site; thus, some level of historic gene flow appears likely. In order to ensure fine-

scale patterns were not masked by the broad scope of the analysis undertaken by Schmidt et 

al. (2020), we repeated the Bayesian clustering analysis of single nucleotide polymorphism 

(SNP) genotypic data using only the 41 individuals from Kalamalka Lake Provincial Park 

and Coldstream Ranch. We again found no evidence of genetic structure that distinguishes 

individuals between sites (Schmidt and Russello, University of British Columbia, 

unpublished data). 

 Although Kalamalka Lake Provincial Park was formally created in 1975, the two sites 

were managed jointly as grazing land under the regime of Coldstream Ranch until 1985 (T. 

Osborne, Coldstream Ranch 2002 Ltd., personal communication) when management of the 

Park site shifted to a multipurpose framework with cattle exclusion. Thus, the landscape 

provides a unique natural experiment whereby snakes on the Park site have been subject to a 

management regime focused on recreation with high levels of direct anthropogenic 

disturbance for nearly 35 years (or approximately 3 rattlesnake generations; Maida et al., 

2018). Conversely, snakes on the Ranch site have had minimal interactions with humans for 

an even longer period of time, although interactions with cattle are probable and may 

confound this.  

MATERIALS AND METHODS 

During a concurrent demographic study of rattlesnakes (Chapter 2), we haphazardly 

selected 68 free-ranging rattlesnakes captured during the period May 27 – August 22, 2019 

(34/site). We avoided neonatal animals because of difficulties assessing the precise initiation 

of rattling in very small individuals. Upon discovery, snakes were captured using reptile 

tongs and immediately placed under a transparent plexi-glass box (30 x 20 x 13 cm) with no 

bottom. The enclosure was situated on flat terrain, open side down, allowing the animal to 

contact the natural substrate. As much as possible, each trial was conducted in a location 

where the snake, in theory, had a 360° view unobstructed by tall grass, shrubs, or rocks. Once 

inside the enclosure the snake was left undisturbed for 5 minutes (following Kissner et al., 

1997). During this time we did not approach within 10 m of animals. After the rest period, 
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the snake was approached by the same observer starting at 10 m away along an unobstructed 

path. A metronome app on a cell phone (ProMetronome, EUMLab, Berlin, Germany) was 

used to standardize the walking pace 70 beats per minute. As the researcher approached the 

enclosure, stride lengths were estimated for distances between 5-10 m. When within 5 m of 

the snake, stride length was standardized by a flexible measuring tape with marks 70 cm 

apart. We set stride length and tempo standards to approximate walking patterns of the 

average recreational visitor. Upon the first detection of rattling behaviour (visual or auditory) 

the approaching researcher immediately halted and recorded the distance (to nearest 5 cm) 

from the toe of their forefoot to the front facing surface of the enclosure. Thus, our response 

variable was distance from the snake to an approaching observer upon first detection of 

rattling (rattle-distance), and could be comparable to Flight Initiation Distance (FID) in other 

behavioural studies (Ydenberg and Dill, 1986). 

After each trial, we recorded Julian date (days elapsed since January 1; JDate), 

weather (percent cloud cover; Cloud), surface body temperature (°C; BodyT; Etekcity 

Lasergrip 1080, Etekcity, California, USA), snout-vent length (cm; SVL), body weight (g; 

Weight), body condition (g/cm; BodyCon), sex, and reproductive status (see Macartney and 

Gregory, 1988). We did not include gravid females in this study as their behaviour changes 

drastically during pregnancy (Macartney and Gregory, 1988; Graves and Duvall, 1993). 

After the trial, individuals were then implanted with a subcutaneous passive integrated 

transponder (PIT) tag (Biomark Model TX1411SSL; Biomark, Boise, Idaho, USA) to permit 

future individual recognition and avoid repeated use of the same individuals. 

Data analysis was conducted using R (R Version 3.6.3, r-project.org, 2020) and the 

significance threshold for all analyses was set to α = 0.05. We used t-statistic, F-statistic and 

classical linear regression for exploratory analyses. However, our rattle-distance 

measurements included a preponderance of zero-values. Log-transforming non-zero values 

provided a more symmetrical distribution, although the data remained zero-inflated as many 

animals did not initiate a rattle response. To address this issue, we developed a two-part 

model (Min and Agresti, 2002) to confirm results from the exploratory analyses.  
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Part 1 regressed the log of odds of the probability of no rattle occurring at either site 

using a logit model to assess the impact of each covariate.  

𝑙𝑜𝑔𝑖𝑡[𝜋𝑖] =  𝛽0
∗ +  ∑ 𝛽𝑗

∗

𝑘

𝑗=1

𝑥𝑖𝑗 

Conditional on non-zero values for rattle-distance, Part 2 assumed a log-normal regression 

model to assess the impact of each covariate.  

log(𝑌𝑖|𝑌𝑖 > 0) =  𝛽𝑗
∗∗𝑥𝑖𝑗 +  𝜖𝑖

∗∗ 

We used Akaike’s Information Criterion (AIC) and the variable selection method to 

determine the appropriate final model. We excluded length and weight and kept only body 

condition in the model as these three variables were highly correlated with each other.  

All field data collection was conducted under Thompson Rivers University Animal 

Use Protocol (#102039), British Columbia Wildlife Act Permit (MRPE15-171661), and 

British Columbia Park Use Permit (#108794).   

RESULTS 

Over the entire sample (N = 68) we recorded 14 zero-values (Fig. 3.1a; Park site = 12, 

Ranch site = 2) and 54 non-zero values (Fig. 3.1b; Park = 22, Ranch = 32) for rattle-distance. 

Mean rattle-distance was 1.15 m in the Park site, and 3.55 m in the Ranch site and was 

significantly different between the two sites (Fig. 3.1b; t = 4.86, df = 57.60, P < 0.001). 

Variation in rattle-distance was significantly greater among individuals on the ranch site (Fig. 

3.1b; F = 2.24, df = (33, 33), P = 0.012). The final model identified site, body temperature, 

Julian date, and body condition as significant variables. 
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FIGURE 3.1. (a) Frequency distribution of the distance (m) from a Western Rattlesnake (Crotalus oreganus) at first observation of 

rattle behavior (rattle-distance) approached by an investigator simulating an approaching hiker. Grey bars = snakes at Park site, white 

bars = snakes at Ranch site. (b) Box plot of actual rattle distances for each site (n = 34/site), bold line = mean rattle-distance.  
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TABLE 3.1. The top three models explaining the rattle response of Western Rattlesnakes (Crotalus oreganus) as a function of the 

distance between the animal and an approaching investigator at first observation of rattling. Model variables included site, body 

temperature (BodyTemp), sex, weather, Julian date (JDate), and body condition (BodyCon). The model explanatory power was 

assessed by Akaike’s Information Criterion (AIC). Combined AIC was the sum of AIC for both parts of each two-part model. Part 1 

represents a logistic model for the log of odds of the probability of no rattle occurring, while Part 2 represents a log-normal regression 

model of non-zero values for estimating the distance at which the animal will exhibit the defensive behaviour.  

 

Models Variables AIC Combined AIC 

Basic Model – Part 1 Site 62.02  

Basic Model – Part 2 Site 

 

143.98 206 

Full Model – Part 1 Site, BodyTemp, Sex, Weather, JDate, BodyCon 

Site, BodyTemp, Sex, Weather, JDate, BodyCon 

 

67.09  

207.37 Full Model – Part 2 

 

140.28 

Final Model – Part 1 Site, BodyTemp, JDate, BodyCon 63.28  

Final Model – Part 2 Site, BodyTemp, JDate, BodyCon 137.71 200.98 
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In Part 1 (occurrence of a rattle) of the final model, Site and BodyTemp emerged as 

significant variables (Table 3.2). The odds probability of a rattle occurring was 9.5× higher at 

the ranch than at the park, given all other variables were fixed. The odds probability of a 

rattle occurring increased by 0.44 times for every 5 °C increase in body temperature for the 

temperature range recorded (18.2 – 38.5 °C), given all other variables were fixed. 

In Part 2 (distance when rattle present) of our final model, Site, Jdate, and BodyCon 

emerged as significant variables while the effect of BodyTemp was negligible (Table 3.2). 

The average rattle distance was 3.49 m closer in the Park site than at the Ranch site given all 

other variables were fixed. For every 30 days elapsed in the experimental period, the 

predicted rattle distance increased by 1.52 m during our observation period (Julian Days 147 

– 234) given all other variables were fixed. For every 10% decrease in body condition, the 

expected rattle distance decreased by 1.30 m (i.e. snakes in poorer condition waited to rattle 

until a human was closer) given all other variables were fixed.  
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Table 3.2. Model parameters for the final model explaining the rattle response of Western Rattlesnakes (Crotalus oreganus) as a 

function of the distance between the animal and an approaching investigator at first observation of rattle behavior. Model variables 

included Site, body temperature (BodyTemp), Julian date (JDate), and body condition (BodyCon). Part 1 represents a logistic model 

for the log of odds of the probability of no rattle occurring, while Part 2 represents a log-normal regression model of non-zero values 

for estimating the distance at which the animal will exhibit the defensive behaviour.  

 

 

 

 

 

 

 

 

Parts Variables Estimates Std. Errors Test-Statistics P-values 

Part 1 Intercept 

Site 

BodyTemp 

JDate 

BodyCon 

-2.02 

2.25 

-0.17 

0.00 

0.02 

3.13 

0.87 

0.09 

0.01 

0.02 

-0.64 

2.54 

-1.86 

0.34 

0.88 

0.52 

0.01 

0.06 

0.74 

0.38 

Part 2 Intercept 

Site 

BodyTemp 

JDate 

BodyCon 

0.44 

-1.25 

0.01 

0.01 

-0.03 

0.88 

0.23 

0.02 

0.00 

0.01 

0.50 

-5.43 

0.27 

3.34 

-2.61 

0.62 

<0.00 

0.79 

<0.00 

0.01 
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DISCUSSION 

Our experiment demonstrated a substantial difference in both the likelihood of 

rattling occurring and mean rattle-distance between areas of high and low human activity for 

this population of Western Rattlesnakes. Consistent with our ad hoc observations, snakes in 

the Park site were significantly less likely to engage in a stereotypic defense, allowing an 

approaching observer to come considerably closer before displaying defensive behaviour. 

Park snakes also displayed much less variation among individuals in rattle-distance 

compared to snakes on the Ranch site. These results are notable given our estimate of genetic 

relatedness among snakes between the two sites, the close proximity of the sites, and the 

relatively short time frame since their management divergence (approximately three Western 

Rattlesnake generations; Maida et al., 2018). Our results suggest that in the Park site the 

rattlesnakes rely more heavily on crypsis over costly warning signals. We believe that the 

low level of variation in responses from Park snakes, in addition to the magnitude of the 

observed difference, suggests possible population-level habituation to human-disturbance on 

the landscape. Determining the generality of this behavioural strategy in Western 

Rattlesnakes will require investigations at additional locations (Howarth, in prep).  

Pseudoreplication often is difficult to counter in natural disturbance experiments 

(Guthery, 1987; Oksanen, 2001 Davies and Gray, 2015; Colegrave and Ruxton, 2018). 

Admittedly, this study lacks a completely randomized design, but given the backdrop and 

logistical constraints of the study this was impossible to achieve. Further, the lower density 

of rattlesnakes in their northern range makes it extremely difficult to obtain adequate samples 

of free-ranging snakes without a coincidental, intensive field study (as opposed to a shorter 

sampling period). Other factors than the presence of humans may be exerting confounding 

effects, but our analysis still is reasonable given we included several putative predictor 

variables in the model, ensuring their effects have been adjusted.  

One long-standing theory for the evolution of the rattlesnake rattle suggests it evolved 

as a warning device to alert large grazing animals in the plains of North America (Hay, 1887; 

Garman, 1889; Barbour, 1922) but this hypothesis has been challenged by several authors 

(Schuett et al., 1984; Sisk and Jackson, 1997; Glaudas et al., 2005; Reiserer and Schuett, 

2016). The interpretation of our results is confounded by the presence of cattle on the Ranch 
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site, suggesting cattle presence may be influencing the difference in the snakes as much, or 

more than, human presence in the Park. Cattle are present in rattlesnake habitat on the Ranch 

site [approximately 3.75 AUM per hectare (1 AUM = animal unit/month, equivalent to the 

forage removed by one 454 kg cow or cow-calf pair in one month - T. Osborn, Coldstream 

Ranch (2002) ltd., personal communication).] for a short time period (~ 1/3rd of the snakes’ 

active season). Thus, the potential for cattle-snake interactions is substantially lower 

compared to the potential for human-snake interactions on the Park site. Further, both the 

Park site and the Ranch site were managed jointly for cattle grazing until 1986 (T. Osborne, 

Coldstream Ranch (2002) Ltd., personal communication) at which point the former was 

opened to human visitation. Thus, we argue that snakes have been exposed to cattle presence 

for longer than they have been exposed to high levels of human traffic. Clearly further study 

on the effect of periodic exposure to grazing animals on rattlesnake defensive behaviour is 

warranted.   

Differences in vegetation cover between our study sites due to the lack of cattle 

grazing in the Park could potentially confound the behavioural differences we detected. 

However, dichotomous habitat use (grassland versus upland forest) within multiple 

populations of Western Rattlesnakes in the same region, suggesting both open and closed 

habitats are important for rattlesnakes (Gomez et al., 2015; Harvey et al., 2020). Still, 

additional investigation into the correlation between microhabitat preference and rattling 

behavior across landscape gradients is needed in addition to how different levels of grazing 

intensity affects this relationship. 

Although Site (reflecting high versus low human activity) was the strongest predictor 

of patterns of rattle behaviour in our study, other factors appeared to affect rattling. Body 

temperature and Julian date both were predictors of whether a snake would rattle or not. The 

majority of individuals in the study (85%) were within the thermal tolerance range for the 

species (16 - 31 °C; Putnam and Clark, 2017); it is reasonable to assume that the effect of 

body temperature on defensive behaviour would be more dramatic at temperatures outside of 

their thermal tolerance. Harvey and Weatherhead (2011) showed thermoregulatory behaviour 

of Massasauga rattlesnakes (Sistrurus catenatus) at their northern limits steadily decreased 

from June through August and rose sharply in September and October. This mid-summer 
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decrease in thermoregulation generally coincides with the reproductive cycle of Western 

Rattlesnakes (Macartney and Gregory, 1988). Kissner et al. (1997) found a weak relationship 

between season and rattle-distance for Prairie Rattlesnakes (Crotalus viridis), with snakes 

allowing closer approaches in the spring, but no consistent relationship between body 

temperature and rattle-distance. It makes sense that early season priorities of 

thermoregulation and ambush hunting would increase the reliance on crypsis over costly anti-

predator displays. The cost of such displays may be counter-balanced by the possibility of 

acquiring a mate during reproductive periods (August – October) which may explain the 

influence of body temperature and Julian date in our model. 

Body condition also was a predictor of rattle-distance, but not for the 

presence/absence of rattling. This suggests that snakes in poorer condition tend to rely on 

crypsis over more costly displays for predator evasion. Lomas et al. (2015) demonstrated that 

Western Rattlesnakes in human-disturbed habitats had lower body condition and lost more 

weight over the season compared to snakes in undisturbed areas. We found no difference in 

mean body condition between the two sites in our study (Chapter 2). Rattlesnakes of poorer 

condition may become more reliant on less energy-intensive behaviours regardless of human-

disturbance, and human-disturbance on the landscape may be additive to the pressures of 

poor condition. Massasauga rattlesnakes have been shown to reduce the length and frequency 

of their movements in a provincial park with high levels of human-disturbance despite no 

difference in body condition between disturbed and undisturbed sites (Parent and 

Weatherhead, 2000). Thus, it appears that body condition and human-disturbance on the 

landscape may promote an increased reliance on crypsis among rattlesnakes independently or 

synergistically.  

Although it is extremely difficult to separate the effects of human disturbance from 

other confounding factors on the landscape, the results of our study follow other reports of 

animal defensive behaviour being linked to human disturbance. The general trend for bird, 

mammal, and reptile populations that are regularly exposed to human presence is increased 

tolerance of people, with habitat contrasts (i.e. populations under low versus high human 

disturbance) being one of the main drivers of habituation and tolerance to human disturbance 

(Samia et al., 2015; Levey et al., 2009; Engelhardt and Weladji, 2011; McGiffin et al., 2013; 
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Shen et al., 2020). If we accept that habituation occurs on the level of the individual 

(Blumstein, 2016; Williams et al., 2020) and that there exists a positive relationship between 

the frequency of human exposure and the degree of human tolerance (Samia et al., 2015), 

then it follows that the differences we detected between these two sites may be a reflection of 

population-level habituation to human visitors. However, more specific study is needed to 

quantify actual encounter rates between humans and snakes in habitats with different levels 

of human visitation.  

While differences in the level of human disturbance are recognized to affect the 

degree of tolerance displayed by populations across landscapes (Samia et al., 2015; Williams 

et al., 2020), decreased variation in tolerance among individuals may be driven by factors 

other than habituation such as phenotypic sorting and behavioural plasticity (Lowry et al., 

2013; Møller et al., 2015; Williams et al., 2020). However, given the spatial heterogeneity of 

sampling (i.e. snakes both near and far from areas of high human traffic) and large sample 

size per site, phenotypic sorting is unlikely. Although our study population may be 

behaviorally plastic to low levels of human disturbance (as evidenced by the high level of 

variation in rattle-distance among individuals at the Ranch site), the relatively low level of 

variation in rattle-distance among individuals at the Park site suggests a more uniform, 

population-level response to human activity.  

Selection pressure can also give rise to tolerance (Lowry et al., 2013; Cooper et al., 

2015). If unnecessary defensive displays directed toward benign humans result in an 

increased energetic cost to rattlesnakes within the Park site, then increased tolerance of 

humans would represent an energetic advantage, and variance in tolerance would decrease 

over time. While it is possible that such selection processes may be operating on this 

population, phenotypic changes are unlikely to have permeated throughout the population in 

just three generations. However, vehicle traffic along Cosens Bay Road may be acting as a 

barrier to gene flow, as even small roads can have a large impact on the genetic diversity of 

snake populations (Clark et al., 2010). A genome-wide association study employing reduced 

representation (e.g. restriction-site associated DNA sequencing; Baird et al., 2008), or whole 

genome sequencing (e.g. Therkildsen & Palumhi, 2017) could be designed to explicitly test 

this. Regardless, if increased tolerance of humans conveys a significant advantage then it is 
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possible microevolutionary processes driven by human activity may be at work within this 

population. Further study of the heritability of tolerance among rattlesnakes and other species 

is warranted, as human visitation is projected to continue to rise in many areas, and the long-

term effects on wildlife may be more ecologically impactful than simply individual 

habituation to non-confrontational human stimuli. 

In short, the exhibition of different behavioural strategies within a single population 

across landscape gradients is of interest for biologists and managers alike. We argue the 

strength of our results suggests this phenomenon may exist elsewhere. To confirm this 

relationship, similar work needs to be conducted in other populations of rattlesnakes 

spanning different land-use regimes with various level of direct human presence.  
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CHAPTER 4 

CONCLUSION 

Summary of Thesis 

The overarching goal of my thesis was to understand how rattlesnake populations in 

British Columbia have changed over time and across contrasting space to inform evidence 

based conservation and management strategies. Specifically, I looked at how the population 

studied in the 1980s in the North Okanagan by Macartney (1985) has changed over time and 

in relation to changing landscapes. I investigated the changes in this population in three main 

ways: (a) how abundance has changed on the landscape, (b) how the population has changed 

morphometrically, and (c) whether defensive behaviour (i.e. rattling) differs depending on 

landscape use.  

The principal findings from my thesis were: 

• The total population of Western Rattlesnakes within our sample has declined by an 

average of 40% over the entire study area. 

• This decline was more severe on average on the Park site (50%) when compared to 

the Ranch site (31%). 

• The decline was more severe when juveniles were included in the estimates, 

suggesting that age/size classes may be differentially susceptible to decline. 

• Adult snake density in the Kalamalka Lake Provincial Park and Coldstream Ranch 

population declined by 22% overall over time, but the density remained considerably 

higher than recently calculated in two other populations approximately 200 km 

further south in the same drainages.  

• The average length of adult snakes declined or remained the same for both males and 

females in both sites, while mass and body condition increased substantially for both 

sexes, and across both sites, since the previous study.  

• Snakes on the Ranch site were 9.5 times more likely to rattle at researchers when 

compared to snakes on the Park site. When snakes on the Park site did rattle, they 

initiated the behaviour at a distance 68% closer on average than snakes in the Ranch 

site.  
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• The strongest predictor of rattling was site (Park vs. Ranch). Encounter rates between 

rattlesnakes and people are expected to be higher in the Park, which could suggest 

rattlesnakes become more reliant on crypsis over defensive displays with increasing 

levels of human visitation. 

 Overall, these findings reflect that substantial population declines of Western 

Rattlesnakes have occurred over time, and that the magnitude of these declines differ across 

these two neighbouring landscapes. These results also support the notion that high levels of 

human visitation, as a result of management direction, may be impacting rattlesnake 

populations and may produce highly uniform, population-level behavioural changes. Our 

results suggest that protected areas, especially those managed in part for recreation, may not 

be acting as ‘anchors’ of conservation, and emphasizes the need for continued monitoring of 

this threatened species to understand the specific threats for continued conservation. 

Implications of Thesis for the Management of Snakes in the Region 

 According to the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC), the main threats to Western Rattlesnakes are habitat loss and fragmentation 

from urban and agricultural developments, road mortality, and human persecution 

(COSEWIC, 2015). Rattlesnakes within Kalamalka Lake Provincial Park are arguably 

subject to all three of these pressures. Here I present suggestions stemming from thesis data 

but also from anecdotal observations collected over 2.5 years of work in Kalamalka Lake 

Provincial Park and Coldstream Ranch. Thus, further detailed investigation on some points is 

still warranted. 

Habitat Loss 

• Substantial rural development at the northern periphery of the Park, occurring 

progressively since before the Macartney study, is reducing the overall 

amount of summer habitat for snakes. 

• Increased fragmentation within the Park from recreational interests. 

Additional mapping of recreational features in relation to snake dens and 

foraging habitat is necessary. 
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• Snakes from dens surveyed within the Park are highly likely to encounter 

footpaths, trails, or roads during their summer movements. Some trails are 

within a few meters of well-populated dens.  

• The ideal mitigation strategy would remove or redirect all trails that intersect 

denning habitat or high-density summer use areas for rattlesnakes, though this 

is unlikely to occur given the multipurpose framework and variety of 

stakeholders within the Park.  

• To mitigate further fragmentation or increased human-rattlesnake encounters, 

plans for new, or changes to existing, trails, parking areas, and day-use areas 

should consider the habitat quality for rattlesnakes, proximity to 

overwintering dens, and the intended use of the development. 

Road Mortality  

• Quantification of road mortality was not feasible in this study, though roadkill 

is typically underestimated in even the most robust studies (Winton, 2018). 

• Even small backroads can pose barriers to dispersal and gene flow, causing 

reduced genetic diversity in snake populations (Clark et al., 2010).  

• Given the development in the lakeshore community that the road services, and 

that there are calls to construct additional parking along Cosens Bay Road for 

park users, it is reasonable to assume that road traffic will continue to increase 

over time.  

• Given the unknown level of road mortality in the Park, and considering the 

results of Winton et al. (2019) in combination with the declines suggested in 

this study and anecdotal evidence of road mortality, additional study into the 

extent of roadkill on Cosens Bay Road should be quantified before proceeding 

with infrastructure development.  

Human Persecution 

• Premeditated, largescale persecution of rattlesnakes in the Park and the Ranch 

no longer occurs. 

• Human persecution of snake species within the Park may still occur on an 

opportunistic basis, both directly and indirectly, in three main formats: 
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1. Road mortality in the form of drivers purposefully swerving to harm 

snakes 

2. Mortality from cyclists running over snakes 

3. Indirect mortality from maintenance staff translocating rattlesnakes. 

 

• The simplest and most inexpensive option for reducing the effects of (1) & (2) 

would be revitalization and increased presence of educational and interpretive 

signs within the Park. The current signs could be renewed to highlight the 

diversity within the Park, educate park users on the status of endangered 

species, and give instructions for safely navigating encounters with 

rattlesnakes and other species.  

• Additional signage in areas where users are most likely to encounter 

rattlesnakes may help to promote awareness of the potential of encounters and 

prevent fear-based responses. 

• To mitigate the effects of (3), additional mapping of ideal translocation drop-

off points for common ‘problem’ areas should be undertaken.

Conclusion 

 Wildlife populations in general are declining globally, with many aspects of 

anthropogenic disturbance such as habitat loss and fragmentation, road-mortality, direct 

persecution, introduction of invasive species, pollution, and fire suppression claiming 

responsibility. These threats are magnified for reptilian species at their northern range limits 

that are already faced with physiological, ecological, and climatic limitations. I investigated 

how a northern rattlesnake population has changed over time and space by closely repeating 

a historical study. The difference in demographic and behavioural data we collected between 

these two landscapes suggests these sites are producing differential pressures on this 

population, despite other potential confounding factors. In light of these declines, and the 

established threats to this species in British Columbia, it appears likely declines could 

continue. However, given historical population estimates and the amount of suitable habitat 

within the Park, there is still hope to develop conservation strategies that will allow the 



78 

 

population to increase. Maintaining connectivity between the Park and the Ranch should 

remain a priority.  

 The risk of succumbing to the SBS is at an all-time high. Without historical reference 

points of population levels, determining whether populations are dangerously declining or 

naturally fluctuating in the wake of rapidly changing environments becomes extremely 

difficult or impossible. The looming threat of mass extinctions, coupled with a widespread 

lack of historical data on population numbers for many species, make it increasingly difficult 

to pinpoint benchmarks of success for recovering populations and to develop effective 

conservation strategies going forward. Perhaps the best return on the investment of 

conservation dollars would be the revisitation of populations with historical data, rather than 

initiating new studies of previously undescribed populations. However, both sets of work are 

needed to combat SBS.  

 This study has broadened the understanding of landscape changes on rattlesnake 

populations, though from a relatively coarse lens. Given the estimated declines, the long-term 

persistence of northern rattlesnake populations will require continued assessment of 

populations to avoid shifting baselines, further study of the suspected drivers of decline, and 

the continued commitment of managers to the conservation of these populations. These 

results highlight the need for conservation strategies tailored to specific populations and 

localized pressures, and emphasizes the pitfalls of point estimates for species-at-risk. This 

study provides unique snap shot comparison between two time intervals separated by over 3 

decades in a population of Western Rattlesnakes in Canada, and provides a compelling case 

for continued monitoring of populations of cryptic species, especially those at risk.  
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APPENDIX A 

MEASURING SNAKES ACROSS THE DECADES: ARE TUBE-RESTRAINT MEASUREMENTS 

COMPATIBLE WITH AN EARLIER METHOD? 

 

Atkins and Larsen.—Comparison of length measurement methods for snakes. 
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INTRODUCTION 

     A diversity of measurement techniques have been used through time to collect data on 

snake body length (snout-vent length or SVL; see Greenbaum 2003 and Tsai et al., 2018 and 

references within), offering flexibility to investigators, particularly those working on 

venomous animals.  Tube-restraint has emerged as a favorable candidate for a universal 

length measurement technique for snakes as it is widely acknowledged as a consistently safe 

standard for the handling of venomous species (Murphy 1971; Murphy and Armstrong 1978; 

Lock 2008; Johnson 2011; Hogan 2015).  This method requires readily available, 

inexpensive equipment, is practical for field studies, and drastically reduces the chance of 

injury to snakes and handlers.  While tube-restraint for non-venomous snakes is not 

necessary to ensure handler safety, it offers protection to animals against potentially harmful 

manipulation of the sensitive head and cervical vertebrae, ensures measurement consistency 

across taxa, and is a practical handling method for veterinary services and taking caudal 

blood samples for genetic analyses. Tube-restraint requires several tubes of varying diameter; 

however, these are inexpensive and easily transportable. 

     While the historical shift in techniques reflects an increasing concern for accuracy and 

the ethical handling of animals, it creates the problem of comparing contemporary data with 

those taken in the past using a different technique.  To ensure such comparisons are robust 

requires a statistical assessment of lengths using different measurement methods.  There are 

several studies that have investigated the accuracy and precision of various body length 

measurement methods (Madsen and Shine 2001; Blouin-Demers 2003; Bertram and Larsen 

2004; Setser 2007; Cundall et al., 2016), but with more attention put towards accuracy within 
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the method, rather than making comparisons between methods. 

 

      In the process of studying a population of Western Rattlesnakes (Crotalus oreganus), 

we needed to compare contemporary data on snake lengths to those collected nearly 35 y 

prior at the same site.  We used the tube-restraint method to measure snake lengths, while 

historical data were collected using noose-restraint poles (see Schmidt and Davis 1941; 

Conant 1958; Bellairs 1967; Fowler 1978; but specifically Gregory et al., 1989), hereafter 

referred to as the noose-stretch method.  To our knowledge a specific comparison of tube-

restraint and noose-stretch methods does not exist.  Understanding the relationship between 

these two techniques would allow historical morphological data to be compared with 

measurements from current populations. 

 

MATERIALS AND METHODS 

     We measured SVLs of Western Rattlesnakes in a population located in Vernon, British 

Columbia, Canada, in the fall of 2018.  We first measured each snake using the tube-restraint 

method where, following Murphy (1971), we coaxed the snake to enter a clear acrylic tube 

until approximately one-third of the anterior end of the snake was inside.  We carefully 

selected the appropriate tube size for the individual to ensure it could not turn its head around 

within the tube and to prevent contortion during handling.  Once the snake was restrained, a 

handler guided the head of the snake into the distal end of the tube and secured the anterior 

section of the snake within the tube while another handler measured its length using a 

flexible measuring tape to trace along the dorsal surface along the vertebral ridge, starting 

from the snout and ending at the opening of the cloacal vent.  We considered tube 

measurements precise when at least two recorded measurements were within 5 mm; thus, 

final tube measurements represent the mean of at least two tracings (see Blouin-Demers 

2003).   

     After allowing each snake a 5-min rest period within holding baskets, we measured 

SVL on the same animal using the noose-stretch method.  We approximated the methodology 

used in earlier studies on the same population of snakes (Macartney 1985, 1989; Macartney 

and Gregory 1988; Macartney et al., 1988, 1990) by using a noose-restraint pole following 

Gregory (1989).  We placed the head of each snake in the noose, then slowly and carefully 
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extended it along a meter stick to obtain a SVL measurement.  We only conducted noose-

stretch measurements once per individual to mitigate stress and injury potential.  To avoid 

user bias and unnecessary additional measurements, the same investigator made all 

measurements.  

     To ensure unbiased comparisons, we ideally would have measured individual snakes 

using both techniques multiple times, with consecutive measurements being recorded by 

different investigators blind to prior measurements.  Unfortunately, we were not able to hold 

our free-ranging study animals in captivity for extended periods (ethical considerations and 

permitting restrictions for species-at-risk), nor could we reliably recapture individual snakes 

for re-measurement except during sequential periods of den egress, between which times 

snake growth would have occurred.  We thus could not completely eliminate the possibility 

that subconscious bias by the investigators would affect the repeatability of the two methods.  

Similar approaches have been taken to compare different measurement techniques, however 

(Madsen and Shine 2001; Measey et al., 2003; Bertram and Larsen 2004).  Using a similar 

measurement technique, Rivas et al., (2008) suggest that measurements gathered 

independently by two experienced researchers are generally consistent.  Finally, two field 

researchers worked side-by-side during the two types of measurement on each snake, acting 

as a double check on the length value being recorded. 

 We used R 3.6.1 (R Development Core Team 2019) for all statistical analyses.  We 

compared tube-restraint and noose-stretch methods using several statistical tests.  First, we 

used a paired t-test to estimate the mean difference in SVL between measurements of both 

methods on the same snake.  Second, we used Linear Regression to assess the relationship 

between noose-stretch and tube-restraint measurements.  We used the tube restraint 

measurement as the predictor variable and the noose-stretch measurement as the response.  

Both measurements were centered by subtracting the mean of each measurement method 

from measurements of individual snakes; this allowed us to estimate the difference between 

measurements for a snake of average size as the y-intercept.  Lastly, we grouped 

measurements into ecologically relevant size classes of juvenile (250–550 mm SVL), 

subadult/adult (550–750 mm SVL), adult (700–800 mm SVL), and large adult (800–1,050 

mm SVL) and we used a single factor ANOVA to assess measurement discrepancy between 
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size classes.  All tests met parametric assumptions, and for all tests, α = 0.05. 

 

RESULTS 

     We obtained paired measurements of SVL for 74 unique individuals.  The mean 

measurement difference between methods was slight (3.2 mm ± 1.5 mm standard deviation, 

or 0.4% of mean body length in the tube sample).  Paired measurements were not 

significantly different (t = ˗1.84, df = 73, P = 0.071; mean difference = ˗0.33; 95% 

confidence interval [CI] = ˗0.68, 0.028), with noose-stretch measurements generally being 

larger than tube-restraint.  There was a strong relationship between measurement methods (r2 

= 0.99, F1,73 = 6,502.3, P < 0.001; Fig. A1) and there was no difference at the origin (95% CI 

of y-intercept, ˗0.36 ≤ β0 ≤ 0.36) and no change in measurement difference between methods 

with changes in snake size (95% CI of slope, 0.97 ≤ β1 ≤ 1.02).  Measurement discrepancy 

was not significantly different between size classes based on residual values from regression 

analysis (F3,69 = 2.33, P = 0.082).  The most severe measurement discrepancies (top 5%; n = 

4) were animals with SVLs of 927, 921, 885, and 635 mm (Fig. A1).  
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FIGURE. A1.  Relationship of zero-centered measurements of Western Rattlesnake (Crotalus oreganus) snout-vent length (SVL) 

obtained via tube-restraint and noose-stretch methods (n = 74) in British Columbia, Canada. The red line represents the mean slope, 

and blue lines represent 95% confidence limits. 
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DISCUSSION 

     Our study indicates that tube-restraint SVL measurements were consistent with those 

obtained using the noose-stretch method. All differences in measurements were relatively 

small, although measurement difference tended to be greater for longer snakes, suggesting 

additional care should be taken when measuring particularly long animals. We attribute these 

greater discrepancies to variability in snake flexibility and cooperation during stretch 

measurements (Madsen and Shine 2001; Foster 2012; Astley et al., 2017) and measurement 

error during tube-restraint measurements for particularly long snakes. Our results did suggest 

that the measurement differences between methods were almost significant; however, we 

believe that for the purposes of comparing data collected using the different methodologies 

(i.e., to determine changes in population structure) this relationship is satisfactory.  

Furthermore, the differences in size obtained by different measurement methods are likely 

miniscule relative to ecologically relevant differences in size structure among populations or 

over time.  

      There has long been a call for a universal model of snake length measurement (Seigel 

and Ford 1988).  We support this call for standardization and advocate for the adoption of 

tube-restraint as a universal standard for snake body length measurements. When 

appropriate, comparisons of data collected using this method versus those used historically 

should continue to be evaluated, particularly for species with varying body forms (i.e., 

Viperidae versus Colubridae, shorter snakes versus relatively longer ones, etc.).   
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