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ABSTRACT 

 

Urban tree canopy processes affect the volume and biogeochemistry of inputs to the 

hydrological cycle in cities. We studied stemflow in isolated deciduous trees in a semi-

arid climate dominated by small precipitation events. To clarify the effect of canopy traits 

on stemflow thresholds, rates, yields, percent, and funneling ratios, we analyzed branch 

angles, bark relief, tree size, cover, leaf size, and branch and leader counts. High branch 

angles promoted stemflow in all trees, while bark relief influenced stemflow differently 

for single- and multi-leader trees. The association between stemflow and numerous 

leaders deserves further study. Among meteorological variables, rain depth was strongly 

correlated with stemflow yields; intra-storm break duration, rainfall intensity, rainfall 

inclination, wind speed, and vapour pressure deficit also played roles. Greater stemflow 

was associated with leafless canopies and with rain or mixed events versus snow. Results 

can inform climate-sensitive selection and siting of urban trees towards integrated 

rainwater management. 
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ERRATUM 
 
Throughout this Thesis, American beech (Fagus grandifolia) 

should be replaced with Riversii European beech (F. sylvatica 

‘Riversii’). 
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CHAPTER 1 
INTRODUCTION 

1.1  URBAN HYDROLOGY CONTEXT 

In response to the ecological and socio-economic issues associated with ongoing 

urbanization, policy makers, resource managers, and urban designers (among others) are 

exploring ways to preserve, enhance, construct, and maintain “green infrastructure.” For 

example, urban vegetation can play an important role in rainwater capture and detention 

as well as filtration of stormwater (Girling and Kellett, 2005). In a study looking at five 

cities in the United States, McPherson et al. (2005) estimated that the value of benefits 

per urban tree ranged from $31 to $89 USD (net benefit $1.37 to $3.09 USD per dollar 

invested in management annually). This reflected energy savings, atmospheric CO2 

reductions, air-quality benefits, aesthetics and property-value enhancements, and 

stormwater-runoff reductions. Applied to the City of Kamloops, British Columbia 

(population ~100,000), which manages over 15,000 trees on public land, this yields an 

estimated total annual benefit ranging from $434,000 to $1.25 million USD. Like many 

municipalities, the City of Kamloops (2010) has concerns about flooding and erosion; 

water quality, including quality of stormwater which is not treated prior to entering 

watercourses; expansion of impervious surfaces; and the cost of new and upgraded 

stormwater infrastructure. Site- and neighbourhood-level stormwater best management 

practices are being implemented in new developments. In recognition of increased 

percentages of impervious surfaces associated with urban and suburban development, 

stormwater managers have identified source controls as one strategy to minimize water 

quantity- and quality-related impacts on nearby ecosystems (Xiao et al., 2007).  

1.2  TREE CANOPY PROCESSES 

Trees are a potential source control (i.e., via canopy interception), but species that 

effectively funnel rainfall to the base of their trunks as stemflow, SF, may contribute 

1



 

	
   	
  

concentrated input to the terrestrial hydrological cycle and soil chemistry (e.g., Levia and 

Herwitz, 2005). Interception loss, Ic  (direct evaporation from canopies) and throughfall, 

TF (whereby rain falls through gaps in the canopy or drips from leaves and branches), are 

the other components into which incident rainfall is partitioned (Crockford and 

Richardson, 2000). Trees can contribute to soil moisture and groundwater recharge 

(Návar, 2011; Tanaka, 2011), but in areas of soil instability, compaction, or paving, SF 

can exacerbate the water quality and quantity issues associated with urban or suburban 

runoff. A better understanding of SF processes in urban environments is needed as the 

basis of planning, design, and management of urban forests. 

1.3  STEMFLOW IN CONTEXT 

Globally, SF has been studied far less than TF, likely because percentage-wise it is 

a relatively small proportion of incident rain (typically 3−10 % vs. 70−80 % for TF in 

broadleaved deciduous forests). Of the growing number of studies published, most are at 

the forest-stand scale in rural or agricultural contexts. Over the past decade, a few studies 

have focused on urban situations (e.g., Xiao and McPherson, 2011; Livesley et al., 2014), 

single-tree processes (e.g., David et al., 2006; Guevara-Escobar et al., 2007; Levia et al., 

2013), meteorological effects (e.g., Van Stan et al., 2014), and seasonal influences (e.g., 

Levia, 2004; Staelens et al., 2008) on SF. Given the high variability associated with SF 

yields, more work is needed to discern how urban tree canopy processes differ from those 

in forests, as they apparently do (Xiao et al., 2000; Asadian and Weiler, 2009). 

1.4  FACTORS INFLUENCING STEMFLOW QUANTITY AND QUALITY 

 1.4.1  Tree Morphology 

Stemflow yields, initiation thresholds, and rates are influenced by canopy traits that 

can differ greatly between species and between age/size classes within a given species. 

Based on characteristics identified by other researchers as important, this study explored 
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the effect of size metrics including diameter at breast height, tree height, and canopy 

width; bark relief; canopy and wood cover fraction; branching angles; and the number of 

branches and leaders present.  

 1.4.2  Storm Meteorology and Seasonal Effects 

Canopy traits and meteorological variables interact in complex ways to influence 

SF initiation threshold rainfall depth, P”, flow rates, and volumes. Research shows that 

rainfall depth and intensity, wind speed and direction, rainfall inclination angle, and 

vapour pressure deficit can influence SF  processes (Van Stan et al., 2014). Exposure of an 

isolated canopy to the elements, whether in an urban or rural situation, changes the 

dynamics of interacting tree traits and storm meteorology, as does the absence of leaves 

in the dormant season (Staelens et al., 2008; Van Stan et al., 2014). 

 1.4.3  Stemflow Chemistry 

Many of the trait and meteorological variables listed above play a role in SF 

chemistry, often reflecting residence time in the canopy (Levia and Herwitz, 2002; 

Staelens et al., 2007; André et al., 2008). In urban areas, airborne pollutants deposited on 

tree canopies can result in higher concentrations of pollutants as well as the nutrients 

commonly found in SF (Xiao and McPherson, 2011). Detailed examination of SF 

chemistry was beyond the main scope of this study, but results of an exploratory satellite 

investigation of SF chemistry for 12 trees over nine rainfall events may be published at a 

later date.  
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1.5  OBJECTIVES  

To address gaps and priorities identified in the literature, this research aimed to: 

1. analyze the contribution of diverse canopy traits to threshold rainfall depth and 

post-initiation rate of SF for isolated trees in an urban park in Kamloops, British 

Columbia, Canada; 

2. for this same sample of trees, explore the influence of various storm meteorological 

characteristics on SF volume, SF  as a percent of incident rainfall, and funneling 

ratios as well as relationships between meteorological and trait variables; and 

3. based on synthesized results, provide guidelines to support application of these 

findings by urban foresters, landscape architects, stormwater managers, and allied 

professionals. 
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CHAPTER 2 
THE INFLUENCE OF RAINFALL DEPTH CLASS AND 

DECIDUOUS TREE TRAITS ON STEMFLOW PRODUCTION  
IN AN URBAN PARK 

2.1  INTRODUCTION 

Urban trees have been found to be associated with disservices, including 

maintenance costs, infrastructure damage, health problems (e.g., asthma), and light 

attenuation (Gorman, 2004; Lohr et al., 2004; Roy et al., 2012). However, trees in urban 

and suburban environments also provide an array of social, economic, health, and 

environmental services (Miller, 1997; Tyrväinen et al., 2005; Roy et al., 2012), and these 

benefits have been found to outweigh associated costs (Peper et al., 2007, 2008; Soares et 

al., 2011). Specifically, trees in urban areas increase aesthetics and property values 

(McPherson et al., 1999; Sander et al., 2010), enhance human health (Tzoulas et al., 

2007), reduce noise and air pollution (Dwyer et al., 1992; McPherson et al., 1997; Nowak 

et al., 2006), diminish carbon dioxide concentrations (Liu and Li, 2012; Nowak et al., 

2013), lessen energy costs (Akbari et al., 2001; Soares et al., 2011), provide wildlife 

habitat (Goddard et al., 2010; Stagoll et al., 2012), and decrease stormwater runoff 

(Sanders, 1986; Soares et al., 2011).  The value of stormwater runoff diminution by urban 

trees and green spaces may not be inconsequential. Soares et al. (2011), for example, 

found that urban trees in Lisbon, Portugal captured and subsequently evaporated an 

average of 4.5 m3 of water annually from their crowns and this was equated to a benefit 

of $48 USD per tree per year, or $1.97 million USD annually when all trees in the city 

are considered. McPherson et al. (2011) suggest that 8 % of the total economic benefit 

($1.33 to $1.95 billion USD) of the Million Trees Los Angeles initiative—a plan which 

would see an additional one million trees planted in that city over a 35-year period—

would be derived from stormwater runoff reduction.  

The decrease in stormwater runoff production by trees in the urban environment 

has been estimated from the volumetric importance of canopy interception loss (Soares  
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et al., 2011; Inkiläinen et al., 2013; Pothier and Millward, 2013). Canopy interception 

loss is the interception, storage, and subsequent evaporation of precipitation by tree 

crowns and accounts for 10−50 % of annual or season-long rainfall from natural forest 

systems (Carlyle-Moses and Gash, 2011). Although much less studied within the urban 

environment, the results available to date suggest that canopy interception loss from city 

trees is also appreciable and may even be greater than that from natural forests. For 

example, at the crown scale, Xiao and McPherson (2011) found that canopy interception 

loss in Oakland, California was 14.3 % of rainfall for an 8.8 m tall sweet gum 

(Liquidambar styraciflua L.) tree, 25.2 % for a 2.9 m tall lemon (Citrus limon (L.)  

Burm. f.) tree, and 27.0 % for a 13.5 m tall ginkgo (Ginkgo biloba L.) tree. Guevara-

Escobar et al. (2007) concluded that crown-scale canopy interception loss from 19 storms 

totaling 152 mm was 59.5 % from a single 5.9 m tall weeping fig (Ficus benjamina L.) in 

Queretaro City, Mexico. Asadian and Weiler (2009) derived average interception loss 

values of 49.1% for three Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and 60.9% 

for three western redcedar (Thuja plicata Donn ex. D. Don) individuals in North 

Vancouver, British Columbia for seven selected events. Enhanced canopy interception 

loss from individual urban trees compared to forested sites may be a consequence of the 

relatively large structural units (e.g., canopy volume) associated with open-grown 

canopies (Brooks et al., 2003; Asadian and Weiler, 2009), greater evaporation rates 

attributable to the urban heat island effect (Asadian and Weiler, 2009), and/or the 

enhanced influence of wind due to the canopies being isolated from one another rather 

than being sheltered as in a forest scenario (Xiao et al., 2000b; Asadian and Weiler, 2009; 

Inkiläinen et al., 2013).  

Canopy interception loss is estimated indirectly by taking the difference between 

precipitation incident upon the canopy and the understory precipitation input to the 

ground below (Carlyle-Moses and Gash, 2011; Saito et al., 2013; Peng et al., 2014). 

Understory precipitation takes two forms: throughfall, TF, the proportion of precipitation 

that either passes through gaps in the canopy or drips from foliar and wood components 

of the canopy; and stemflow, SF, the fraction of precipitation that is intercepted by the 
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tree cover and subsequently flows down the tree bole to the base of the tree (Levia et al., 

2011). Interception loss studies conducted within natural forests have often found that TF 

is the dominant volumetric understory rainfall input, with SF usually accounting for 

< 5 % of precipitation at the plot-scale or beyond (Zhongjie et al., 2010; Levia et al., 

2011; Carlyle-Moses et al., 2014). However, the proportion of rainfall partitioned into SF 

has been found to greatly exceed 5 % in certain forests. Wei et al. (2005), for example, 

found that SF represented 15.5 % of growing-season rainfall from a Mongolian oak 

(Quercus mongolica Fisch. ex Turcz.) forest in northern China, while Ford and Deans 

(1978) found that SF accounted for 27 % of the 1639 mm annual rainfall input to a  

14-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation in southern Scotland. 

Stemflow studies conducted on individual trees in forest settings have also found 

relatively high proportions of rain being partitioned into SF (e.g., Johnson and Lehmann, 

2006; Liang et al., 2009), with some values being as great as 64 % of rainfall on a crown- 

projection-area basis (Masukata et al., 1990). A review of the interception loss literature 

suggests that canopy interception loss studies conducted in urban systems typically do not 

measure SF and either consider this input to be negligible (e.g., Asadian and Weiler, 

2009) or to be a small and fixed fraction of rainfall based on the results of studies in 

natural forests (Inkiläinen et al., 2013). However, the aforementioned findings of 

relatively high SF proportions from forests and lone trees in forests, as well as certain 

studies conducted on isolated trees in urban areas (e.g., Xiao et al., 2000b), suggest that 

large errors in interception loss estimates may result if SF is ignored or assumed to be a 

small portion of rainfall.   

There is growing recognition of the hydrological and biogeochemical importance of 

SF in non-urban forests and plant communities (Levia et al., 2011; Frost and Levia, 

2013). Stemflow in these environments has been found to 1) greatly increase soil 

moisture around and deep beneath the base of the tree or plant, creating a reservoir of 

water on which the tree or plant can draw in times of need, a phenomenon known as the 

“nursing effect” (Goodall, 1965; Li et al., 2008); 2) create “fertile islands” where soil 

nutrients are found in greater concentrations at the tree/plant base than in other areas 
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(Whitford et al., 1997; Li et al., 2008); 3) be an important point source of groundwater 

recharge (Tanaka et al., 1996; Taniguchi et al., 1996; Tanaka, 2011); 4) result in localized 

overland flow (Herwitz, 1986); and 5) even be responsible, at least in part, for the rapid 

stream response to rainfall inputs under certain conditions (Crabtree and Trudgill, 1985). 

The potential importance of SF in urbanized areas has received little study in either 

volumetric or biogeochemical terms, despite indications that pollutants concentrate in  SF 

(Michopoulos, 2011; Xiao and McPherson, 2011). Given that SF is a concentrated point 

source of water rather than a diffuse source like TF, we suggest that SF  may, in 

conjunction with canopy interception loss and when infiltration is promoted, serve a role 

in diverting precipitation from becoming stormwater runoff. Additionally, we suggest 

that SF may also be important from a management perspective because it may lessen tree 

irrigation water demand. Thus, study is required to determine the quantitative importance 

of SF and to assess the influence rain depth and tree traits have on SF production in urban 

environments so that the role of individual trees in stormwater mitigation in areas of 

differing rainfall regimes can be more fully understood.    

The objective of this study was to determine if SF was an important component of 

the canopy water balance and/or an important point source of water at the base of 

deciduous trees under full-leaf conditions in an urban park. Specifically, we aimed to:  

1. determine the relationship between tree-scale SF volume and event-scale rainfall 

depth;  

2. derive the proportion (%) of rain partitioned into SF and the SF funneling ratios 

associated with these trees for differing rain depth classes (< 2 mm, 2 to < 5 mm, 

5 to < 10 mm, and ≥ 10 mm); and  

3. define which tree traits influenced the proportion of rain partitioned into SF and the 

magnitudes of SF funneling ratios under the differing rain depth classes.   

Meeting these objectives will, in part at least, inform stormwater managers and 

urban foresters of the potential quantitative importance of SF when deriving canopy 

10



 

	
   	
  

interception loss estimates and in determining if SF serves stormwater management 

and/or supplemental irrigation roles (Vico et al., 2014). Additionally, meeting the stated 

objectives will provide information regarding which tree traits and rainfall regimes 

influence SF production in the urban environment.  

2.2  METHODS 

2.2.1  Study Area 

This study was conducted within McArthur Island Park (MIP) in the City of 

Kamloops, British Columbia, Canada (50° 41’ 43” N, 120° 22’ 38” W) at an elevation of 

344 m a.m.s.l. (Figure B.1). McArthur Island Park is a 51-ha multi-use sport and leisure 

area bounded to the south by the Thompson River and on other sides by a slough (Figure 

B.2). Green space at MIP includes several tree stands, including fairly continuous tree 

and shrub cover in the riparian zone encircling the park. In the more manicured centre of 

the site, many trees are isolated, meaning that all trees had an unobstructed field of view 

at least 35° from vertical, centred where the lowest branch met the bole. Although 

coniferous tree species are present at MIP, including white spruce (Picea glauca 

(Moench.) Voss), most trees are deciduous, including cultivated species of maple (Acer 

spp.), oak (Quercus spp.), and ash (Fraxinus spp.).   

Based on climate normals (1981–2010) for Environment Canada’s “Kamloops A*” 

climate station, situated 4.4 km west-north-west of the study site at an elevation of 345 m 

a.m.s.l,, mean annual temperature for this location is 9.3°C, while mean monthly 

temperatures range from –2.8°C in January to 21.5°C in July. Mean annual precipitation 

is 277.6 mm with approximately 224.3 mm (81%) falling as rain and the remainder as 

snow. Kamloops’ mid-latitude, semi-arid steppe climate (BSk Köppen climate type) is 

modified to a moist, temperate climate (Cwb Köppen climate type) at the study site due 

to extensive irrigation in the spring and summer months that sustains tournament-

standard turf and cultivated, non-native trees.  
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 2.2.2  Precipitation and Stemflow Measurement 

Precipitation and SF were measured on an event basis from June 12, 2012 to 

November 3, 2013. Rainfall depth, P, was measured using an Onset® tipping-bucket rain 

gauge (Model # S-RGB-M002) connected to an Onset® Hobo® U-30 USB data logger 

(Model # U30-NRC) (Figure B.3). The tipping bucket (resolution 0.2 mm tip-1) was 

situated 1 m off the ground on private property immediately north of MIP. 

Accompanying the tipping bucket rain gauge was a manually read polyethylene gauge 

(diameter 29 cm, depth 36 cm), again positioned at a height of 1 m. The tipping bucket 

and manually read rain gauge were between 80 and 770 m from the study trees. Eight 

other manually read gauges were placed within MIP resulting in gauge density of 

approximately 0.04 km2 gauge-1 and a maximum gauge-to-study-tree distance of 

approximately 215 m.  

We collected SF using black corrugated polyethylene hose of two diameters: 

3.2 cm for 32 trees and 3.8 cm for the five largest trees (Figure B.4). After removal of a 

lengthwise section of hose, the collar was wrapped twice around the tree at an angle 

sufficient to ensure flow and one edge was stapled to the trunk. The seam and staples 

were sealed with 100 % silicone to prevent leaks; collection collars were regularly 

inspected and repaired throughout the study. The outlet of each open-topped collar was 

inserted and secured with electrical tape to an intact length of hose which directed SF into 

a 17-L polyethylene pail set within a 114-L lidded polyethylene tote to provide overflow 

capacity; elastic cord securing PVC plastic over the lid prevented contamination of SF by 

rain, and two 4-L water-filled polyethylene jugs in each tote anchored the reservoir to 

prevent displacement by high winds.  

 2.2.3  Tree Selection and Trait Measurement and Derivation 

Study trees were: i) deciduous trees in good condition; ii) trees representing a range 

of canopy characteristics; iii) trees of diverse sizes, but with a minimum diameter-at-

breast-height, DBH, of 10 cm; and iv) “isolated” trees as defined above. 
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Basic Tree Size Metrics:  Diameter at breast height (cm) was measured using a Lufkin® 

Metric Diameter Tape and tree height, H (m), was measured using a Suunto PM5/SPC 

clinometer. Dripline radius in eight directions was found using a periscope-style 

instrument with 5 x 5 dot grid in the viewfinder; the average of these was doubled to 

calculate average canopy width, CW  (m). Areas were calculated using each cardinal-

direction dripline radius, and averaged to yield projected canopy area, PCA (m2). 

Projected wood area, PWA (m2) was the product of PCA and percent wood cover (see 

below). Side-view leaf-on photographs, also used for side-area calculation (see below), 

were used to calculate canopy height, scaled in Photoshop® CC using an item of known 

dimension; canopy height-to-width ratio, HWR (dimensionless), was determined using 

canopy height and CW. To calculate canopy volume, VolC (m3), side-view leaf-on area 

(including gaps; see below) for the view corresponding to the chosen side-view leaf-off 

tracing was divided by CW to yield average canopy height; this was then multiplied by 

PCA to give volume. Wood volume, VolW (m3), was calculated in the same way. 

Side Area Leaf and Side Area Wood:  Side-view leaf-on and leaf-off photographs were 

taken from eight consistent directions at similar heights using a pole-mounted, remotely 

controlled GoPRO Hero3 camera (7MP resolution, medium field of view). The clearest 

pair of leaf-on and leaf-off photographs was traced by hand and scanned. Photoshop® CC 

was used to select canopy (leaf-on, including gaps) and wood (leaf-off) areas, and pixels 

were converted to m2 using an item of known dimension in each photo.  

Canopy Cover (CC) and Wood Cover (WC):  Beneath-canopy skyward photographs of 

both leaf-on and leaf-off canopies were taken using a Nikon 7100D with lens set to 

70 mm focal length mounted on an Optex® T25 tripod with level. Six photos were taken 

at a mount height of 0.3 m along transects extending in each cardinal direction at the 

following distances relative to the known dripline radius: 0.15 (adjacent to bole), 0.25, 

0.5, 0.75, 0.875 (to reflect high variability at this distance), and 1.0 (dripline). Photoshop® 

CC was used to select either cover or open areas within the canopy (Figure B.5), yielding 

leaf-on CC (%) and leaf-off WC (%) values.  
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Leader and Branch Characteristics:  To sample branch angles, we photographed each 

“feeder” branch greater than 20 mm diameter that intersected the leader judged to be 

most central and/or vertical. The number of sizeable secondary leaders was noted (and 

used to calculate total number of leaders, Ln, at the base of the canopy) and counts (but 

not angles) of branches intersecting secondary leaders were used to generate a total 

branch count (Bn) for the tree. Therefore, unless the tree had a single leader, the branch 

angles calculated are for a subset of feeder branches. Photographs were taken 

perpendicular to the initial direction of the branch and two angles were determined using 

ImageJ software: 1) angle of intersection of the branch and leader and 2) average 

(overall) angle from intersection to furthest extent of the branch (one or both of these 

could be negative). Canopies were divided into upper, mid-, and lower sections, and 

average intersection (upper, AIU; mid, AIM; and lower, AIL) and overall angles (upper, 

AAU; mid, AAM; and lower, AAL) were found for each section as well as for the full tree 

(intersection, AIF; and average, AAF). In addition, the inner, mid, and outer third of each 

feeder branch was classified as either “continuous” (positive flow towards the bole) or 

“discontinuous” (flow towards the dripline); if an inner- or mid-canopy segment was 

discontinuous, so were all further segments of that branch, and if two of three segments 

drained away from the bole, the branch was given an overall “discontinuous” rating. For 

each tree, an overall frequency of discontinuous branch segments (FD) was calculated. 

Bark Relief Index (BRI):  We calculated a quantitative bark relief index using the ratio 

of the furrowed circumference of the tree to the surface (unfurrowed) circumference at 

breast height (1.3 m, or slightly higher or lower to avoid branches and deep scars) (Figure 

B.6). The surface circumference was measured using a flexible measuring tape, while the 

furrowed circumference was the length of a ribbon pushed into furrows and other surface 

features around the bole at that same height. This measure is based on the same principles 

and methods pioneered by Yarranton (1967) and Van Stan et al., (2010) to measure bark 

microrelief. Overall bark roughness reflects bark relief in conjunction with other 

characteristics (e.g., bark thickness, texture, and storage capacity; Levia and Herwitz, 

2005; Van Stan and Levia, 2010) that were not quantified in this study. 
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Median Leaf Size (MLS):  Samples of between 13 and 49 leaves were taken from each 

tree (representing a gradient from canopy edge to interior) and were sorted in order of 

size. The median leaf for each sample was scanned and its area calculated using 

Photoshop® CC to yield MLS. 

 2.2.4  Data Analysis 

Using exploratory cluster analysis (K-means method; IBM® SPSS® Statistics 

Version 22, hereafter SPSS®) of 34 independent trait variables (not including Ln), the 37 

study trees were assigned to clusters that corresponded to two general canopy 

morphologies: single-leader (main stem with feeder branches intersecting it) and multi-

leader (two or more leaders converging at the base of the canopy, each of these 

intersected by feeder branches). Given observations that SF drains to and along the 

undersides of upright branches (e.g., Herwitz, 1987), it makes intuitive sense that SF 

production processes might differ in trees with single, vertical trunks vs. multiple major 

leaders. We therefore separated trees into Group A (single leader, n = 20) and Group B 

(multi-leader, n = 17) for analysis.  

Two measures are commonly used to describe the magnitude and efficiency of SF 

concentration at the base of a tree. Stemflow volume as a percentage of rain incident on 

the entire PCA can be interpreted along with TF and interception loss in the context of 

canopy water balance (Rutter et al., 1975; Guevara-Escobar et al., 2007):  

𝑆𝐹  % =
𝑆𝐹

𝑃 ∙ 𝐶𝑃𝐴 

where SF is in L, P is in mm, and PCA is in m2. The second measure, SF funneling ratio, 

FR (Herwitz, 1986), is the ratio between SF volume collected at the base of the tree and 

the volume that would have accumulated in a gauge the same area as the trunk basal area, 

BA (m2): 

𝐹𝑅 =
𝑆𝐹

𝑃 ∙   𝐵𝐴 
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Funneling ratio is independent of PCA, meaning that broad and narrow trees of similar 

DBH and SF with similar FR could have very different SF % values. For each of these 

measures of SF concentration, data was grouped into four rain-depth classes: I) < 2 mm, 

II) 2 to < 5 mm, III) 5 to < 10 mm, and IV) ≥ 10 mm. Differences within and between 

groups were analyzed in SPSS® using a one-way ANOVA with Tukey HSD post-hoc 

(Tukey, 1953; see Zar, 1984). Data was tested for outliers (Grubbs, 1950) as well as 

normality, and linearity of relationships between dependent and independent variables 

was assessed. Where justified to improve normality or linearity, one of the following 

transformations was applied: x2, x3, ln(x), x -1, or . Stepwise-up multiple regression 

(Smith’s Statistical Package, hereafter SSP) was then used to explore the influence of tree 

morphological traits for both SF % and FR for rain depth classes II, III, and IV (given the 

sparsity of data in class I). Prior to finalizing each regression equation, we confirmed that 

there was no unacceptable multicollinearity among independent variables (i.e., r2 < 0.64; 

Hair et al., 1998). 

2.3  RESULTS 

 2.3.1  Precipitation 

A total of 327.9 mm of rain fell during 86 events recorded between June 12, 2012 

and November 2, 2013, of which over 80 % were < 5 mm, consistent with climate 

normals for Kamloops (Figure 2.1). 

 2.3.2  Study Tree Characteristics   

The 37 isolated trees selected for this study represented 21 commonly used 

ornamental species of diverse habits and sizes with DBH ranging from 10.2–68.7 cm 

(Table 2.1). Mean measured or calculated values for the trait variables described above 

are presented in Table 2.2 along with the range of each value for single- and multi-leader 

trees. These 37 trees represent almost all isolated deciduous trees in the park; by  
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Figure 2.1. Rain depth frequency distribution during the study period compared to Canadian 
Climate Normals 1981–2010 for station Kamloops A* (Environment Canada, 2014). 

 

calculating rainfall inclination angles and wind directions (section 3.2.4), we verified that 

rain throughout the research period fell unobstructed on study tree canopies. 

 2.3.3  Stemflow for Individual Trees as a Percentage of Rainfall  

Boxplots of both SF % and FR data are presented in Figures 2.2a–d. Grubbs’ test 

was used to verify that none of the mean SF % or FR values were significant (p ≤ 0.05) 

outliers within each tree group for each rain class (Grubbs, 1950).  

The percentage of rainfall diverted by the canopies of the 37 study trees into SF 

was largely negligible for events < 2 mm, with 10 of the 20 single-leader and 13 of the  

17 multi-leader trees generating no more than < 0.1 % SF for any event in this small rain 

depth class. The smallest rain depth to generate SF ≥ 0.1 % from single-leader trees was 

1.0 mm, which produced 1.5 % SF from tree A-1. With the exception of A-1, single-

leader trees that produced SF did so only during the second largest (1.4 mm) and/or 

largest (1.6 mm) rain event(s) in the rain depth class. Mean SF % for SF-producing 

single-leader trees for these two rainfall events was 0.5 % (SD = 0.4 %) ranging from 
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Table 2.1. Single-leader (Group A) and multi-leader (Group B) study trees listed in 
ascending order of diameter at breast height, DBH, with associated overall height, H, 
average canopy width, CW, and projected canopy area, PCA. 

 

1 of 1

ID Latin name Common name ��� 
(cm)

 ��
(m)

�� 
(m)

������
(m2)

A-1 Cercidiphyllum japonicum Katsuratree 10.2 5.7 3.7 11.1
A-2 Cercis canadensis Eastern Redbud 10.5 4.9 4.0 13.5
A-3 Quercus rubra Red Oak 11.4 6.3 5.1 17.6
A-4 Prunus virginiana  'Shubert' Shubert Chokecherry 12.7 7.2 4.5 19.5
A-5 Robinia pseudoacacia 'Purple Rain' Purple Rain Bl. Locust 14.6 7.9 6.9 34.1
A-6 Gleditsia triacanthos Honeylocust 15.1 9.9 6.4 46.1
A-7 Acer saccharinum Silver Maple 15.9 9.6 5.1 20.2
A-8 Tilia cordata Littleleaf Linden 17.2 8.1 4.6 17.5
A-9 Fraxinus pennsylvanica Green Ash 19.0 10.5 6.0 27.3

A-10 Acer rubrum columnar Columnar Red Maple 19.0 11.3 5.2 22.4
A-11 Fraxinus pennsylvanica Green Ash 19.7 10.6 5.6 25.5
A-12 Quercus rubra Red Oak 20.3 10.1 7.3 44.0
A-13 Quercus macrocarpa Bur Oak 21.5 9.8 7.5 37.2
A-14 Quercus robur columnar English Columnar Oak 23.5 14.6 2.8 6.3
A-15 Acer x freemanii 'Armstrong' Armstrong Freeman Maple 24.1 13.1 3.5 11.1
A-16 Aesculus hippocastanum Horsechestnut 31.0 10.8 5.8 27.7
A-17 Prunus padus var.  commutata Mayday Cherry 34.3 9.6 8.5 50.3
A-18 Quercus palustris Pin Oak 43.0 14.1 13.6 149.1
A-19 Quercus palustris Pin Oak 52.7 13.8 13.7 150.6
A-20 Quercus palustris Pin Oak 60.7 24.7 14.2 164.8

B-1 Salix babylonica Weeping Willow 15.2 8.1 5.9 28.9
B-2 Sorbus quercifolia Oak-leaf Mountain Ash 18.3 6.3 4.4 15.9
B-3 Prunus virginiana 'Shubert' Shubert Chokecherry 18.8 8.5 6.6 35.2
B-4 Gleditsia triacanthos 'Sunburst' Sunburst Honeylocust 21.0 8.7 7.8 52.5
B-5 Acer platanoides Norway Maple 24.6 8.7 8.1 54.2
B-6 Acer platanoides 'Crimson King' Crimson King Maple 26.0 8.9 5.3 23.4
B-7 Fraxinus pennsylvanica Green Ash 28.9 12.6 7.5 43.5
B-8 Acer platanoides Norway Maple 36.9 10.3 10.1 84.7
B-9 Fagus grandifolia American Beech 38.8 11.0 9.3 65.8

B-10 Aesculus hippocastanum Horsechestnut 41.3 8.3 7.5 46.5
B-11 Acer platanoides 'Crimson King' Crimson King Maple 43.0 12.0 10.7 99.7
B-12 Tilia cordata Littleleaf Linden 46.0 11.2 7.6 43.5
B-13 Fraxinus pennsylvanica Green Ash 51.8 13.0 14.2 163.8
B-14 Robinia pseudoacacia Black Locust 54.3 10.5 11.2 103.0
B-15 Catalpa speciosa Northern Catalpa 58.0 14.2 9.5 79.5
B-16 Eleagnus angustifolia Russian Olive 66.8 16.8 15.1 206.6
B-17 Acer saccharinum Silver Maple 68.7 18.6 16.7 214.5
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Table 2.2. List of selected tree and canopy metrics indicating mean (range) values within 
Group A (n = 20) and Group B (n = 17). 

 

 

0.2 % for A-5, A-7, and A-11 to 1.4 % for A-1. The smallest single rain depth to generate 

SF > 0.1 % from multi-leader trees was 0.9 mm, for which SF from trees B-3 and B-9 was 

1.0 % and 0.9 %, respectively. The other two multi-leader trees to generate SF in this rain 

depth class (B-2 and B-5) did so for only the largest rain event (1.6 mm), with both trees 

partitioning 1.0 % of rain into SF. Stemflow accounted for 2.3 % of this 1.6 mm rain for 

trees B-3 and B-9. 

With the exception of A-14 and A-15, no significant (p ≤ 0.05) difference in mean 

SF % was found among single-leader trees across the three rain depth classes greater than  

Table __. List of selected tree and canopy metrics indicating mean (range) values within group A 
(n = 20) and group B (n = 17). 

 

Tree Trait  Group A (single-leader) Group B (multi-leader) 
  Mean Range Mean Range 

Basic Tree  DBH (cm) 23.8 (10.2–60.7) 38.7 (15.2–68.7) 
Size Metrics Tree Height, H (m) 10.6 (4.9–24.7) 11.1  (6.3–18.6) 
      

Canopy 
Dimension  

Canopy width, CW (m) 6.7 (2.8–14.2) 9.3  (4.4–16.7) 
Canopy height-to-width ratio, HWR 1.49 (0.79–4.13) 1.12 (0.71–1.47) 

Metrics Projected canopy area, PCA (m2) 44.8 (6.3–164.8) 80.1  (15.9–214.5) 
 Projected wood area, PWA (m2) 11.3 (1.4–54.9) 34.1  (2.6–109.4) 
 Canopy volume, VolC, (m3) 371.2 (28.3–1801.2) 803.6  (56.9–3872.0) 
 Wood volume, VolW  (m3) 28.4 (1.0–183.5) 120.8 (3.1–551.4) 
      
Cover Metrics Canopy cover, CC (%) 89.3 (74.9–99.6) 92.4 (80.7–98.8) 

 Wood cover, WC (%) 23.1 (10.5–41.0) 37.8 (14.7–68.4) 
      
Branch and  Branch count, Bn (no. branches) 28.2 (12–52) 59.3 (27–85) 

Bark Metrics Leader count, Ln (no. leaders) 1.0 (1–1) 3.6 (2–6) 
Intersection angle, full tree avg, AIF (°) 43.6 (14.3–68.1) 44.8 (25.0–60.2) 
Intersection angle, upper 1/3 avg, AIU (°) 48.0 (20.4–75.1) 46.0 (22.6–58.8) 

 Average angle, full tree avg, AAF (°) 43.3 (18.2–77.0) 41.3 (6.5–66.2) 
 Average angle, upper 1/3 avg,,AAU (°) 49.5 (13.5–83.0) 43.8 (-3.3–66.2) 
 Frequency of discontinuity, full tree, FD 0.17 (0.00–0.48) 0.18 (0.00–0.59) 
 Bark relief index, BRI (ratio) 1.08 (1.00–1.23) 1.18 (1.00–1.43) 
      
Leaf Size Median leaf size, MLS (cm2) 26.8 (1.4–92.2) 23.2 (1.8–71.6) 

      
!
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Figure 2.2a. Boxplots for stemflow % for single-leader (Group A) trees by rain depth 
class: I (< 2 mm), II (2 to < 5 mm), III (5 to < 10 mm), and IV (! 10 mm). 
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Figure 2.2b. Boxplots for stemflow % for multi-leader (Group B) trees by rain depth 
class: I (< 2 mm), II (2 to < 5 mm), III (5 to < 10 mm), and IV (! 10 mm). 
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Figure 2.2c. Boxplots for funneling ratio for single-leader (Group A) trees by rain depth 
class: I (< 2 mm), II (2 to < 5 mm), III (5 to < 10 mm), and IV (! 10 mm). 

22



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2d. Boxplots for funneling ratio for multi-leader (Group B) trees by rain depth 
class: I (< 2 mm), II (2 to < 5 mm), III (5 to < 10 mm), and IV (! 10 mm). 
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< 2 mm. Mean average rain depth class SF for these 18 trees was 0.7 ± 0.5 %, 1.7 ± 1.1 %, 

and 2.3 ± 1.3 % for the 2 to < 5 mm, 5 to < 10 mm, and ≥ 10 mm classes, respectively. 

Although mean SF % for A-14 for the 2 to < 5 mm class (2.5 ± 5.9 %) was not 

significantly (p ≤ 0.05) greater than for other single-leader trees, it was for all but three 

trees for the 5 to < 10 mm class (11.8 ± 9.1 %), and for all trees with the exception of A-15 

for the ≥ 10 mm class (12.3 ± 8.4 %). A-15 partitioned a significantly (p ≤ 0.05) greater 

percentage of rainfall into SF (3.6 ± 4.8 %) than six other single-leader trees for the 2 to 

< 5 mm rain depth class, all trees with the exception of A-14 for the 5 to < 10 mm class 

(12.0 ± 10.1 %), and 11 of the 19 other single-leader trees for the ≥ 10 mm rain depth class 

(8.1 ± 4.1 %). At the individual rain-event scale, SF % was found to be quite large for A-

14 and A-15 for certain events. For example, A-14 generated 18.0, 21.7, and 22.8 % SF for 

22.4, 8.8, and 25.6 mm rainfall events, respectively, while A-15 generated 12.3, 12.5, and 

27.9 % SF for 7.8, 32.7, and 5.2 mm events, respectively. Stemflow % was also found to 

be highly variable for A-14 and A-15, even for rainfalls of similar depths. A-14, for 

example, although producing 13.1 % SF for a 4.6 mm rain event, did not partition any 

rainfall to SF for a 5.6 mm event, while A-15 partitioned 11.1 % of a 2.9 mm rain event 

into SF, but none of a 3.1 or 3.2 mm rainfall. 

Under the 2 to < 5 mm rain depth class, multi-leader trees B-3 (2.3 ± 1.2 %), B-5 

(2.2 ± 2.5 %), and B-9 (4.3 ± 3.6 %) had significantly (p ≤ 0.05) greater mean SF % than 

4, 10, and 14 other multi-leader trees, respectively.  Excluding B-3, B-5, and B-9, 

average mean SF % for the 2 to < 5 mm rain depth class was 0.4 ± 0.5 %, ranging from 

< 0.1 ± < 0.1 % for the five largest DBH trees in this tree group (B-13–B-17) to  

1.4 ± 1.9 % for B-6. For the 5 to < 10 mm rain depth class, SF % (9.6 ± 6.7 %) for B-9 

was significantly (p ≤ 0.05) greater than for 13 other multi-leader trees whose average 

mean SF % was 1.1 ± 1.1 %. Mean SF % values for trees B-2 (4.0 ± 3.2 %), B-3  

(3.6 ± 2.6 %), and B-5 (4.4 ± 4.0 %) were not significantly (p ≤ 0.05) greater than these 

13 trees, nor were they significantly smaller than B-9 SF %. In the largest rain depth 

class, ≥ 10 mm, B-9 SF % was significantly (p ≤ 0.05) larger than all other multi-leader 

trees (9.9 ± 1.4 %), while B-6 partitioned a greater percentage (p ≤ 0.05) of rainfall into 
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SF (5.9 ± 3.4 %) than eight other trees in this group, including B-4 (0.7 ± 0.2 %), B-7 

(1.2 ± 0.7 %), B-11 (1.7 ± 0.8 %), and the four largest DBH trees in this group (B-14– 

B-17) whose SF % values ranged from 0.1 ± 0.1 % for B-16 to 0.7 ± 0.6 % for B-15. In 

addition to the aforementioned statistically differing SF % values for this largest rain 

depth class, B-13 SF % (0.2 ± 0.1 %) was also found to be significantly (p ≤ 0.05) lower 

than that of B-2 (4.3 ± 3.5 %), B-3 (3.8 ± 0.6 %), and B-10 (4.1 ± 1.9 %), while B-16 and 

B-17 (0.2 ± 0.2 %) SF % values were found to be significantly (p ≤ 0.05) lower than that 

of B-2, and SF % for B-17 was significantly (p ≤ 0.05) lower than B-10. At the individual 

rain-event scale, some notably large SF % values from multi-leader trees included 12.1 

and 18.7 % from B-9 associated with 4.6 and 8.8 mm rain events, respectively, as well as 

11.0 % SF from B-6 during a 32.7 mm event and 9.4 % SF from B-5 from a 9.7 mm 

event.  

 2.3.4  Stemflow Funneling Ratios for Individual Trees 

Event-scale FR values from single-leader trees in the < 2 mm rain depth class 

ranged from zero for the 10 trees that did not produce SF in the class to 21.5 from A-5 

during a 1.4 mm rain event.  The 1.0 mm rain event that produced SF from A-1 had an 

associated FR value of 20.6. Mean FR values for the two largest rain events in this class 

(1.4 and 1.6 mm) from the 10 SF-producing single-leader trees in this rain depth class 

were 4.8 ± 8.6 and 9.4 ± 6.4, respectively. For the multi-leader trees that produced SF for 

events < 2 mm, B-3 and B-9 had FR values of 12.5 and 5.6, respectively, during a 

0.9 mm rainfall, while for the 1.6 mm event, B-3 and B-9 had FR values of 30.8 and 13.5, 

respectively, and B-2 and B-5 had values of 6.4 and 11.1.  

For the 2 to < 5 mm rain depth class, the mean FR value of A-1 was found to be 

20.8 ± 14.5 and was significantly (p ≤ 0.05) greater than that of A-11 (2.4 ± 5.7), A-12  

(1.4 ± 3.0), and the five largest-DBH single-leader trees, whose mean FR values ranged 

from 0.7 ± 1.6 for A-19 to 3.4 ± 3.9 for A-17. The mean FR value associated with A-5 

(31.5 ± 20.9) for the 2 to < 5 mm rain depth class was significantly (p ≤ 0.01) larger than 

all single-leader trees with the exception of A-1 and A-2. Funneling ratios for the multi-
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leader trees in this rain depth class averaged 6.4 and ranged from < 0.1 ± < 0.1 for trees 

B-14 and B-16, to 28.6 ± 15.0 for B-3. At the individual event scale for rain depths  

5 to < 10 mm, FR values were found be as high as 56.4 from single-leader trees (A-1, 4.6 

mm event) and 96.8 from multi-leader trees (B-5, 4.6 mm event). Although the range in 

mean FR values for single-leader and multi-leader trees was large for the 5 to < 10 mm 

rain depth class (3.2 ± 2.4 for A-19 to 50.7 ± 33.6 for A-1; < 0.1 ± < 0.1 for B-16 to 53.4 

± 37.1 for B-9), the small number of events (n = 6) combined with the large variability of 

FR in this rain depth class (mean coefficient of variation = 78.0 % for single leader trees, 

106 % for multi-leader trees) meant that no significant (p ≤ 0.05) differences in FR were 

found among the single-leader or multi-leader trees. For rain events > 10 mm, A-5 had a 

mean FR value (58.6 ± 12.0) that was significantly greater than 12 of the 19 other single 

leader trees, while A-12 had a significantly (p ≤ 0.05) greater mean FR value (38.4 ± 

18.6) than did A-13 (4.8 ± 5.5). For multi-leader trees, with the exception of B-1 (49.4 ± 

22.7), B-3 (45.1 ± 5.2), and B-5 (42.9 ± 18.6), B-9 (81.3 ± 64.9) had a mean FR that was 

significantly (p	
  ≤	
  0.05)	
  greater than the other 13 multi-leader trees, which averaged 13.4 

and ranged from 1.1 ± 1.3 (B-14) to 28.1 ± 16.6 (B-6). Notable FR values for individual 

events ≥ 10 mm include 117.8 by A-3 during a 9.7 mm event and 196.9 for B-9 during a 

25.6 mm event. 

 2.3.5  Stemflow Percent and Funneling Ratios as a Function of Morphological Traits 

As noted above, we observed high variability in event-scale SF % and FR within 

and between tree Groups A (single-leader) and B (multi-leader) as well as for individuals 

and groups between rain depth classes. Results of multiple regressions (Table 2.3) 

indicate that different tree traits were associated with SF % vs. FR and with smaller vs. 

larger rain depth classes, both within and between groups. 
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Table 2.3. Multiple regression equations for stemflow percentages and funneling ratios as 
functions of tree morphological traits (all coefficients significant at p ≤ 0.05), generated 
for single-leader (Group A, n = 20) and multi-leader trees (Group B, n = 17) in three rain 
depth classes. 

 

2.4  DISCUSSION 

It is well established that complex meteorological as well as tree morphological 

factors contribute to observed variation in stemflow, SF (Levia and Frost, 2003; Van Stan 

et al., 2011; Pypker et al., 2011). Chapter 3 will explore the role of both canopy traits and 

storm meteorology on stemflow initiation thresholds, P”, and flow rates, QSF, as well as 

seasonal aspects of this 37-tree study. This chapter analyzes the influence of canopy traits 

on variation in SF % and FR.  

Group A – Single leader Group B – Multi-leader 

SF#%, 2 to < 5 mm 

!(!.!"!!!"!!.!" !" !"#!!!!.!")!
SEE!=!0.330,!r2!=!0.901 

!(!!.!"!!"#!!.!"!!"#!!.!"!!!!!.!") 
SEE!=!1.229,!r2!=!0.882!

SF#%, 5 to < 10 mm 

!(!.!!!!"#!!.!"!!"!!.!"!!!"!!.!") 
#

SEE!=!0.357,!r2!=!0.873!
(7.39! 1

!"# +!0.03!!! ! + 0.06!!"# − 0.03!!"# − 9.19)! 

SEE!=!0.333,!r2!=!0.881!
SF#%, ≥ 10 mm!

!(!.!"!!"#!!.!"!!!!!.!"!!"#!!.!")#
SEE!=!0.296,!r2!=!0.890#

(−0.18!!" + 0.0002!!!! − 2.55!!"# + 0.41!!!! + 4.31)! 
SEE#=!0.263,!r2!=!0.921!

FR, 2 to < 5 mm#

!(!!.!" !" !"#!!.!"!!"#!!.!"!!"#!!.!"!!!!!.!")#
#

SEE#=!0.402,!r2!=!0.886#
74.87 1

!"# − 57.65 

SEE!=!7.542,!r2!=!0.438!
FR, 5 to < 10 mm#
−14.56 ln!"# − 0.68!!! + 0.58!!"# + 97.86#

#
SEE!=!8.498,!r2!=!0.729#

−990.10! 1
!"# + 151.11 1

!"# − 91.20 

SEE!=!12.906,!r2!=!0.573!
FR, ≥ 10 mm#

646.86!!! − 10.45 ln!"# + 118.25!!"# − 97.83#
SEE!=!7.902,!r2!=!0.676#

(−12.99!!"# + 0.16!!"# + 125.95! 1
!"# + 9.18)! 

SEE!=!1.066,!r2!=!0.792!
!
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 2.4.1  Tree Size, Canopy Dimensions, and Branch Metrics 

Numerous studies have found that diameter at breast height, DBH, positively 

predicts SF volume. For example, Germer et al. (2010) found that SF yields in two 

tropical tree species were correlated with DBH, but only for size classes > 10 cm. 

Likewise, Park and Hattori (2002) showed that greater basal area,  BA, was associated 

with higher SF yields in a deciduous broad-leaved forest in central Japan. However, in 

our study, when DBH was a significant (p ≤ 0.05) factor influencing Group B SF % for 

2 to < 5 mm, it was negatively related. (The negative correlation of FR with DBH for all 

three rain classes reflects that BA is in the denominator of the formula for FR). For 

smaller rain events typical of the study region, the storage capacity, P”, of our largest 

trees was rarely met (André et al., 2008; Valente et al., 1997); consequently, higher SF 

yields for small rain events were generally associated with smaller trees and a suite of 

size- and age-related variables correlated with lower DBH. When moderately sized trees 

produced SF at low rain depths (e.g., 0.9 % SF was generated by B-9 for a 0.9 mm event), 

we could often identify one or more conducive traits such as smooth bark, multiple 

leaders, or upright branching habit as discussed in more detail below. For our study trees, 

DBH was significantly correlated (Spearman’s r  ≤ 0.05) with canopy width, tree height, 

projected canopy area, canopy volume, wood cover, and bark relief index. These 

variables appeared to work together in the larger study trees, limiting penetration of small 

rainfalls to the SF-conducting woody infrastructure and promoting obstruction and 

absorption of potential SF over the height and width of trees with deeply furrowed bark as 

well as greater wood area and volume (Ford and Deans, 1978; Aboal et al., 1999). 

However, the same combination of traits was associated with relatively higher SF 

production for large rain events that more completely saturated the canopy: broader, 

taller, denser canopies tend to capture more rainfall, particularly in windy conditions 

(Xiao et al., 2000a; Van Stan et al., 2011), but whether this potential SF   is efficiently 

funneled to the base of the bole depends on factors other than size as discussed below 

(Van Stan and Levia, 2010; Pypker et al., 2011).  
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While size-related variables clearly influence SF production, so did canopy shape 

for small rain events in our study. The height-to-width ratio, HWR, was significantly 

(p ≤ 0.05) inversely correlated with Group A funneling ratio, FR  (negatively), and Group 

B SF % (positively) for 2 to < 5 mm rain depths. The opposing relationships may reflect 

that broader crowns (lower HWR) facilitate funneling from a broader area relative to BA 

(higher FR) while columnar trees (high HWR) efficiently concentrate flow generated over 

smaller areas (higher SF %), at least in part due to highly inclined branch angles (Levia 

et al., 2013). A possible mechanism for this is the increased effective crown projection 

area (Xiao et al., 2000a) presented by relatively tall, narrow trees to wind-driven rain 

which can penetrate to the branches and bole more readily than in broader canopies (Van 

Stan et al., 2011). This pattern was echoed in the ≥ 10 mm rain class where SF % was 

inversely related to canopy width, CW, such that narrower canopies were associated with 

higher SF yields on a per-canopy-area basis. As an example, the columnar form of A-15 

may have contributed to a high event SF % value of 27.9 % from a 5.2 mm rainfall. 

Group A SF % in the smallest rain class only was significantly (p ≤ 0.05) inversely 

correlated with canopy volume, VolC, consistent with size-related patterns noted above. 

Given lower P” values associated with smaller trees, our finding likely reflects that trees 

with larger VolC generate little or no SF at rain depths < 5 mm. Few studies have found 

relationships with VolC in trees (particularly isolated trees), but our finding is in contrast 

with observations by Martinez-Meza and Whitford (1996) that SF volume was directly 

related to canopy volume of Larrea tridentata, a desert shrub, leading them to suggest 

that larger canopies in that species more efficiently redistribute limited rainwater to the 

roots as a drought-resistance mechanism. 

 2.4.2  Cover Metrics 

As noted above, wood cover, WC, was correlated with DBH and higher WC values 

predicted greater SF % for one rain class each for single- and multi-leader trees. This is 

consistent with recent findings by Levia et al. (2013) that higher SF yields in European 
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beech saplings were associated with higher total dry woody biomass and much higher 

woody-to-foliar biomass ratios. Although canopy cover, CC, was not correlated with 

DBH, it was significantly (p ≤ 0.05) positively related to Group A SF % for the largest 

rain depth class and Group B SF % for 5 to < 10 mm events; however,  CC was inversely 

related to Group A FR for the latter rain depth class, suggesting that canopy density 

interacts in complex ways with DBH, branch angles, and bark relief index, BRI. A 

consistent finding in the literature is that leafless canopies produce more SF than those in 

full leaf (e.g., Xiao and McPherson, 2011), and appear to be more sensitive to an array of 

meteorological influences such as wind speed, rainfall intensity, and vapour pressure 

deficit, VPD (Van Stan et al., 2014). In a detailed study of a single beech canopy, 

Staelens et al. (2008) found that the defoliated condition was associated with lower 

interception loss, higher SF yields, and lower SF initiation thresholds (1.5 mm for leafless 

vs. 2.1 mm for leafed).  

 2.4.3  Leader and Branch Characteristics 

The number of leaders, Ln, was significantly (p ≤ 0.05) positively correlated with 

SF % for 2 to < 5 mm and ≥ 10 mm suggesting that, despite greater surface areas 

associated with multiple leaders, they may play an important role in the convergence of 

SF at the base of the canopy, particularly for smooth-barked trees. An example of this 

combination of traits is the American beech (B-9) in our study that had six leaders and a 

BRI of only 1.04; this tree produced SF at low rain depths and in consistently high 

volumes relative to other trees of its size. For example, SF % values for B-9 for 4.6 mm 

and 8.8 mm events were 12.1 % and 18.7 %, respectively. Variables with which Ln was 

significantly (p ≤ 0.05) correlated included upper-canopy intersection angles, AIU, full-

tree intersection angles, AIF, and branch count, Bn (all positive) and frequency of 

drainage discontinuity, FD (negative), reinforcing the importance of woody biomass and 

high branch inclination angles (Levia et al., 2013) and suggesting that optimal funneling 
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of rain to SF is seen in smooth-barked, multi-leader trees with many inclined branches 

draining continuously to the bole. 

Branch count was a significant (p ≤ 0.05) factor for FR in single-leader trees 

(inversely for class II and positively for class IV rain depth classes), but was not 

significant for either SF % or FR in multi-leader trees or SF % in single-leader trees. For 

small events, high Bn may increase P” due to increased woody surface area, but for larger 

events when canopies are approaching saturation, additional branches serve as 

infrastructure for flow to the bole. While branch count was not significantly correlated 

with any other traits for multi-leader trees, it was correlated (p ≤ 0.05) with BRI and FD 

(positively) and AIU, AIF, and CW (negatively) for single-leader trees, illustrating that for 

this group of trees, plentiful branches may be associated with SF-enhancing and/or SF-

suppressing characteristics for storms of various rain depths. Levia et al. (2013) found 

that higher SF was associated with higher primary and secondary branch counts in beech 

saplings while Návar (1993) demonstrated this trend for semi-arid shrubs with the 

number of branches angled at > 80° and mean branch angle both contributing to the best 

predictive model. As noted before, this variable interacts with many others, and is likely 

more important in conjunction with other factors than alone. 

Positively correlated AIF explained more variation in SF % than any other trait for 

single-leader trees (all rain depth classes), while upper-canopy average angle, AAU, was 

positively related to SF % for class III events and AIU was positively related to FR for 

Class II and III rain depths (p ≤ 0.05). For these trees, including some markedly columnar 

individuals, steeper branch angles appeared to promote flow, a finding that is well 

supported in the literature (Herwitz and Levia, 1997a; Herwitz, 1987; Xiao and 

McPherson, 2011). For multi-leader trees, AIU was significantly (p ≤ 0.05) positively 

correlated with SF % for class III events and on FR for class III and IV events; AIF, 

however, was inversely related to SF % for class III events and to FR for the largest rain-

depth class. It is possible that when high-angle upper branches are efficiently conducting 

SF, lower branches (intersecting the bole at lower angles) best contribute by collecting SF 
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at the dripline, making sense of the relationship between lower AIF and higher SF. 

Individual trees with high branch angles in this study often had the highest mean and/or 

event SF % and FR values; for example, A-14 generated 22.8 % SF from a 25.6 mm event 

while A-1 had a mean FR of 20.8 ± 14.5 for 2 to < 5 mm rain depths and an event FR of 

56.4 for a 4.6 mm event. In synthesizing findings on this topic, Pypker et al. (2011) point 

out the trade-off between capture efficiency and SF generation as influenced by branch 

angle, projected branch area, and total branch area, a trade-off that varies vertically 

within individual trees as well as between individuals and species. Návar (1993) 

documented that dominant branches in the upper canopies of three semi-arid shrub 

species conducted a disproportionate quantity of SF, a result also found for trees. For 

example, Hutchinson and Roberts (1981) concluded that 98 % of SF was generated in the 

upper half of Douglas-fir canopies while Levia and Wubbena (2006) suggested that part 

of the explanation may be smoother upper-bole bark water storage capacities that can be 

half those of the lower bole.  

 2.4.4  Bark Relief 

Bark relief had a variable effect depending on rain depth class and single- vs. multi-

leader form, a departure from patterns noted in other studies (Levia and Herwitz, 2005; 

Van Stan and Levia, 2010; Livesley et al., 2014). The fact that higher BRI was associated 

with higher SF % and FR in single-leader trees for the largest rain depth class suggests 

that, once saturated, the increased surface area of more deeply fissured bark may enhance 

SF. However, this pattern was reversed for multi-leader trees for all except SF % for the 

smallest rain depth class, implying that smooth bark works with other characteristics 

associated with multiple leaders (e.g., greater wood volume and area) to promote SF. For 

rain events < 2 mm in our study, the two trees with the highest FR value in their 

respective groups were A-5 (21.5 from a 1.4 mm event) and B-3 (30.8 from a 1.6 mm 

event), likely reflecting the contribution of their smooth bark to funneling efficiency.  
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 2.4.5  Leaf Size 

Median leaf size was not significant (p ≤ 0.05) for either tree group in any of the 

rain depth classes, which is not surprising given that this factor is only rarely reported in 

the literature. In a study of six species in a laurel forest, Aboal et al. (1999) theorized that 

relatively high SF efficiency of Erica arborea may have been due, in part, to its much 

smaller leaf size. 

 2.4.6  Assessment of Predicted Patterns on an Individual Tree Basis 

Among single-leader trees, SF % values for two trees stood out: A-14 and A-15. In 

examining their traits relative to those in the regression equations, it is clear that they are 

unremarkable in some aspects (DBH, BRI), but represent extremes of other traits. Their 

height-to-width ratios are 4.1 (A-14) and 2.9 (A-15) compared to a group mean of 1.5 and 

consequently their AAU, AIU, and AIF values are among the highest of Group A trees and 

their canopy volumes are the lowest. Canopy cover measures are the highest in the group, 

while WC values are in the upper end of the range. These two trees do illustrate a 

seemingly optimal interaction of these traits, which have varying effects at different rain 

depth classes, when calculated per  PCA. On the other hand, FR is calculated per BA, 

eliminating the “advantage” of tall, narrow trees. Figure 2.2c illustrates that FR, for A-14 

and A-15, was significantly (p ≤ 0.05) greater than for other individuals, making it clear 

that SF % and FR are distinct measures of SF efficiency, emphasizing the contribution of 

a canopy relative to the tree’s PCA or BA, respectively ( Návar, 1993).  

For multi-leader trees, B-9 had the greatest mean SF % values in all rain depth 

classes as well as the highest event percentages, 12.1% for a 4.6 mm event and 18.7 % 

for an 8.8 mm event. In the 2 to < 5 mm depth class, SF % was correlated with DBH 

(inversely) as well as HWR and Ln (positively); the only trait for which B-9 departs from 

the group average is the number of leaders (6 compared to Group B average of 3.6). 

While BRI was not significant (p ≤ 0.05) at this rain depth, it is in the 5 to < 10 mm 

category and, in combination with above-average AIU and below-average AIF, the 
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smooth bark of B-9 (BRI = 1.04) may have contributed to group-maximum values for this 

American beech. 

High FR values were observed for three single-leader trees at various rain depths: 

A-1, A-3, and A-5. For the 2 to < 5 mm rain depth class, the smallest tree (A-1, 10.2 cm 

DBH) had the highest mean FR (20.8 ± 14.5) and event FR (56.4 for a 4.6 mm event), 

reflecting the importance of DBH and HWR (both inverse) and AIU (relatively high for  

A-1 at 58.7°); given a value of Bn close to the group average, this tree’s small, smooth 

branches were likely of secondary importance. For rain depths from 5 to < 10 mm, A-3 

had a group-maximum FR of 117.8 from a 9.7 mm event; this tree’s small DBH (18.8 cm) 

and slightly above-average AIU were conducive to SF production, but the other 

significant (p ≤ 0.05) trait for this rain depth class, CC, was above average for this tree, 

whereas the regression indicated that lower CC was associated with higher FR. We 

suggest that the exceptionally smooth bark of B-3 (BRI 1.01) magnified the importance of 

other conducive traits. Finally, the highest event FR for multi-leader trees for rain depths 

< 2 mm was 21.5 for a 1.4 mm event for A-5, which also had the highest mean FR of 

58.6 ± 12.0 for the ≥ 10 mm category. For both small (2 to < 5 mm) and the largest depth 

classes, FR was inversely related to DBH  (relatively small at 14.6 cm for A-5); at small 

depths, the small HWR, high AIU, and very low Bn of A-5 explain its high SF production, 

whereas at depths ≥ 10 mm, its small DBH is the only significant (p ≤ 0.05) variable 

associated with high FR. Its semi-smooth bark (BRI 1.07) and low Bn should not promote 

SF, but this may be a case where the interaction of smooth bark with other traits results in 

patterns that don’t fully reflect the regression equations based on group data. 

For multi-leader trees, high mean and event FR was noted for three trees: B-3, B-5, 

and B-9. At the smallest rain depths, an event high FR of 30.8 was recorded for a 1.6 mm 

event for B-3; this same tree had a mean FR of 28.6 ± 15.0 for the 2 to < 5 mm depth 

class. The only factor that was significant (p ≤ 0.05) for Group B FR in that depth class 

was BRI, explaining such high production from B-3 (BRI = 1.01). In this same depth 

class, B-5 had a FR of 96.8 from a 4.6 mm event; BRI was moderate in this tree (1.10), 
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but the presence of four leaders and above-average branching angles may explain this 

high FR (as may the trend in single-leader trees of high SF % and FR for trees with 

deeply furrowed bark during large events). Once again, B-9 emerged as a high producer 

with a FR mean of 81.3 ± 64.9 for events ≥ 10 mm and an event maximum of 196.9 for a 

25.6 mm event. The very smooth bark of this tree (BRI = 1.04), its high AIU (54.5 vs. 

group average of 46.0), and its low AIF (36.8 vs. group average of 44.8) support the 

relevance of variables identified as significant (p ≤ 0.05) in the regression equation for 

this depth category. 

2.5  CONCLUSION 

This systematic investigation of the influence of various canopy traits on 

stemflow percent and funneling ratio has generally confirmed the importance of some 

deciduous tree characteristics found by other researchers to be correlated with increased 

stemflow, including small diameter at breast height (primarily for single-leader funneling 

ratios) and high branch angles. An exception to the latter trend in our study was the 

inverse relationships between 1) full-canopy average branch angles and stemflow percent 

for rain depths of 5 to < 10 mm and 2) full-canopy intersection angles and funneling 

ratios for rain depths ≥ 10 mm for multi-leader trees. 

By identifying inconsistencies in some patterns, our study has emphasized the 

importance of understanding the differential importance of certain traits for various rain 

depth classes and in trees of different forms. For example, bark relief index was directly 

correlated with stemflow percent and funneling ratio  for rain depths ≥ 10 mm, but only 

for single-leader trees; however, higher stemflow percent and funneling ratio in multi-

leader trees were correlated with smoother bark. To our knowledge, this is the first study 

that has found the number of leaders converging at the base of a canopy to be 

significantly (p ≤ 0.05) correlated with stemflow production; we look forward to future 

research on this morphological trait. 
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As found in virtually all stemflow studies to date, the variability in stemflow yields, 

stemflow percentages, and funneling ratios is high, even when a relatively uniform 

sample of trees is available. Chapter 3 will address meteorological characteristics that 

tend to interact with canopy structure differently in each season as well as potential 

stemflow yield patterns associated with different precipitation types. Based on 

generalized findings of this and other studies, we recommend the following in order to 

promote stemflow production and minimize stormwater runoff in urban environments:  

• Ensure that sufficient infiltration capacity is available at the base of trees for 

stemflow volumes estimated with the region’s storm regime and tree’s mature size 

in mind. Spatially concentrated stemflow has the potential to be more readily 

managed than highly dispersed throughfall. 

• In climates with mostly small rain events, select trees that will stay small as they 

tend to produce stemflow at lower rain depths and in greater quantities than large 

trees. If large rain events are frequent, larger canopies tend to produce more 

stemflow once they are saturated. 

• In combination with other traits, canopy and wood cover were positively associated 

with stemflow production. Prepare for potentially greater stemflow yields from 

leafless canopies in the dormant season, particularly if mixed precipitation is 

common in your region. 

• Select trees with multiple leaders or many major branches converging at the base of 

the canopy; this trait was correlated with high stemflow production for a range of 

rain depths, particularly in concert with high branch angles and smooth bark. 

• Select trees with relatively high branch intersection angles as this trait promotes 

stemflow at all rain depths. 

• In general, select trees with smooth bark as they tend to have lower storage 

capacities (and thus lower stemflow  initiation thresholds) and higher stemflow 

yields. However, if planting or managing single-leader trees, be aware that deeply 
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furrowed bark was correlated with efficient stemflow production for rain events 

≥ 10 mm, possibly reflecting enhanced conduction over a greater saturated surface 

area. 

Further research is needed on stemflow as well as throughfall and interception-loss 

in isolated cultivated trees, both deciduous and coniferous, in urban areas representing a 

wide range of climatic conditions. Evidence is growing that canopy water balance in 

these solitary urban trees reflects different interactions of canopy traits and storm 

characteristics than those observed in closed-canopy forests. 
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CHAPTER 3 
TREE TRAITS AND METEOROLOGICAL FACTORS 

INFLUENCING THE INITIATION AND RATE OF STEMFLOW 
FROM ISOLATED DECIDUOUS TREES  

3.1  INTRODUCTION 

Given the hydrological implications of vegetation-related planning and 

management decisions in forested, agricultural, and urban settings, it is critical to refine 

our understanding of the processes at this interface of the atmospheric and terrestrial 

hydrological cycles. Tree canopy water balances have been most actively studied and 

modelled since the 1970s (Rutter et al., 1971; Gash, 1979) from single-tree (David et al., 

2006; Guevara-Escobar et al., 2007) to stand scales (Carlyle-Moses and Price, 1999, 

2007), in semi-arid (Návar, 2011) and arid (Llorens and Domingo, 2007) to tropical 

ecosystems (Herwitz, 1985; Germer et al., 2010), and from the varied perspectives of 

canopy architecture (Park and Cameron, 2008), meteorology (Van Stan et al., 2011), 

biogeochemistry (Neary and Gizyn, 1994; Michopoulos, 2011), and groundwater 

recharge (Taniguchi et al., 1996).  

Precipitation incident on vegetation canopies is partitioned into 1) interception loss, 

the portion directly evaporated from leaf and wood surfaces; 2) throughfall, TF, which 

reaches the ground directly through gaps or drips from the canopy; and 3) stemflow, SF, 

which is funneled to the base of the plant via the branch infrastructure and bole (Helvey 

and Patric, 1965; Valente et al., 1997). In broadleaf deciduous forests, understory 

precipitation in the form of TF and SF can represent from 70–80 % and 3–10 % of rain 

incident on the canopy, respectively (Llorens and Domingo, 2007; Van Stan et al., 2011). 

However, compared to the dispersed nature of TF inputs to the forest floor, the 

concentration of SF in a much smaller area means that this volumetrically minor quantity 

can have a disproportionate impact on the terrestrial hydrological cycle (Levia and Frost, 

2003; Staelens et al., 2007; Germer et al., 2010; Levia et al., 2010). As in natural and 

managed forests, areas at the base of urban tree trunks can constitute hot spots (and hot 
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moments) of hydrological and biogeochemical enrichment (e.g., McClain et al., 2003; 

Staelens et al., 2007). Implications of this concentrated flux are intensified in urban 

landscapes characterized by impervious surfaces, compacted and constrained soils, and 

high pollutant levels (Xiao and McPherson, 2011). Extremes of drought and flood are 

common outcomes of meteorological variability in cities, making trees appealing as 

potential rainfall interceptors (Xiao et al., 2007; Inkiläinen et al., 2013; Livesley et al., 

2014). Trees of certain forms in some climates (e.g., Germer et al., 2010) may funnel 

sufficient SF to create water quantity and quality issues in urban conditions. In conducive 

planting sites, however, high SF producers have the potential to self-irrigate and self-

nourish (Levia and Frost, 2003), to direct pollutants from canopies to soils for 

biofiltration (Xiao et al., 2007), and even to recharge groundwater via preferential 

pathways along roots (Tanaka, 2011). 

There is some evidence that SF processes in urban trees, particularly those isolated 

from their neighbours, differ from those observed in natural forest stands (Xiao et al., 

2000; Guevara-Escobar et al., 2007), meaning that findings from forested environments 

cannot necessarily be applied in single-tree situations (Livesley et al., 2014). The 

empirically based model developed by Xiao et al. (2000) confirms the relevance of three 

broad influences on SF: 1) magnitude and duration of rain; 2) meteorological conditions 

during the storm; and 3) canopy characteristics of the tree. Research on these factors in 

non-urban forests around the world is now readily available (e.g., Staelens et al., 2008;  

Levia et al., 2011), but fewer studies have been done in urban settings and for isolated 

trees (Xiao et al., 2000; Guevara-Escobar et al., 2007; Livesley et al., 2014).  

Rain depth is commonly the dominant meteorological predictor of SF volume 

(Germer et al., 2010; Návar, 2011), but there is evidence that other meteorological factors 

can play a role, including storm duration (Levia, 2004), rainfall intensity (Calder, 2001; 

Price and Carlyle-Moses, 2003), wind speed (André et al., 2008b) and direction (Van 

Stan et al., 2011), rainfall inclination angle (Van Stan et al., 2011), and vapour pressure 

deficit, VPD (Van Stan et al., 2014b). Little study has been done on the importance of 

within-storm break duration; however, André et al. (2008a) found, for a temperate oak-
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beech forest in Belgium, that both storage capacities and SF initiation thresholds were 

affected by the ratio of cumulated potential evaporation for the dry period preceding the 

storm to volume of rainfall associated with the previous storm event. 

In general, studies focusing on canopy traits point to the collective importance of a 

tree’s SF-conducting infrastructure (Pypker et al., 2011; Levia et al., 2013). Diameter at 

breast height, DBH, is usually a strong predictor of SF production (Deguchi et al., 2006; 

André et al., 2008b; Šraj et al., 2008; Germer et al., 2010; Van Stan and Levia, 2010), but 

studies showing high yields for small trees (Germer et al., 2010; Levia et al., 2013) are 

stimulating further research.  

Other factors influencing SF production include effective canopy area, which is 

greater for columnar trees where inclined rainfall is common (Xiao et al., 2000; Guevara-

Escobar et al., 2007), particularly in sparse forests and for isolated trees (Herwitz and 

Slye, 1995). Canopy cover fraction, canopy volume, and leaf area index, LAI, have been 

explored (e.g., Marin et al., 2000; Park and Hattori, 2002; Xiao and McPherson, 2011), 

but their influence cannot be generalized across species, ecosystems, or rainfall regimes 

(Pypker et al., 2011). 

Wood cover fraction and the volume of wood within the tree canopy have 

implications for SF, particularly during seasonal defoliation; increased SF in leaf-off 

condition has often been observed (André et al., 2008b; Dunkerley, 2013). Recently, 

Levia et al. (2013) measured woody as well as foliar biomass for 10 European beech 

saplings, concluding that greater SF  yields were associated with both higher woody 

surface area per unit projected canopy area, PCA, and higher ratios of woody to foliar 

biomass; other influential metrics included branch count per unit PCA and mean branch 

inclination angle. Increasing branch inclination is conducive only to a point as nearly 

vertical branches present minimal surface area to rain and drip TF while being subject to 

greater drip loss themselves; Herwitz (1987) observed linear (dry branches) then 

logarithmic (saturated branches) increases in detention of droplets, with > 80 % of 

rainfall captured at inclinations above 60°. 
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Bark relief is one trait that clearly limits SF through at least two mechanisms: 

increased storage capacity per unit area (Herwitz, 1985; Levia and Herwitz, 2005) and 

greater surface areas associated with deeply furrowed bark (Van Stan and Levia, 2010).  

Leaf size has been studied less than composite canopy measures, although 

hydrophobicity and inclination angles have been explored (Holder, 2012). In their model, 

Xiao et al. (2000) found high sensitivity of SF to increases in leaf zenith angles. 

In general, research to date suggests that, for trees of comparable size, SF 

production tends to be greater if a tree has a moderately dense canopy, high woody-to-

foliar biomass ratio, highly inclined branching angles, and smooth bark, acknowledging 

that different meteorological regimes can enhance or diminish the importance of these 

characteristics. Such generalizations are based on numerous different studies of diverse 

species from different climatic regions, making definite conclusions on the role of 

individual traits and meteorological factors problematic. This study took a systematic 

approach, focusing on diverse and detailed canopy traits at a relatively contained site 

(ensuring that all trees were subject to similar meteorological forces). Specific objectives 

of the study were to: 

1. derive, for each tree, the threshold rain depth, P”, and the flow rate once P” has been 

satisfied, QSF  ;  

2. characterize relationships between canopy traits and SF threshold, rate, and yield; and 

3. identify meteorological and seasonal variables that influence SF yield.  

3.2   STUDY AREA AND METHODS 

 3.2.1  Study Area 

McArthur Island Park (MIP) in the City of Kamloops, British Columbia, Canada 

(50° 41’ 43” N, 120° 22’ 38” W, elevation 344 m a.m.s.l.), is a 51-ha multi-use sport and 

leisure facility on the north shore of the Thompson River (Figures B.1 and B.2). The site 
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encompasses several tree stands, including fairly continuous tree and shrub cover in the 

riparian zone of the slough that borders the park on the east, north, and west. However, 

many trees within the perimeter access road at MIP are isolated, which, for the purpose of 

this study, refers to those trees with no obstructions, including other tree canopies, 

extending into a field of view 35° from vertical and centred where the lowest branch 

meets the bole. (Methods described below were used to verify that no inclined rainfall 

was obstructed by neighbouring trees during this study.) Most trees at MIP are deciduous, 

including cultivated species of maple (Acer spp.), ash (Fraxinus spp.), and oak (Quercus 

spp.).   

Environment Canada’s “Kamloops A*” climate station, located approximately  

4.4 km west-north-west of MIP at an elevation of 345 m a.m.s.l,, has an associated mean 

annual (1981–2010) temperature of 9.3°C and mean monthly temperatures ranging from 

–2.8°C (January) to 21.5°C (July). Of mean annual precipitation (277.6 mm), rain 

accounts for 81 % (224.3 mm) and snow for the remainder. A climograph for the 

“Kamloops A*” station is provided in Figure 3.1. The area has an average of 101.1 rain-

days per year; approximately 83.3 (82 %) of the rain-days have associated rain depths 

between 0.2 and < 5 mm. On average, 4.3 rain-days per year have associated rain depths 

of between 10.0 and < 25.0 mm, while rain-days with depths ≥ 25.0 mm occur, on 

average, once every 5 years. MIP is extensively irrigated to meet tournament-standard 

turf conditions and sustain cultivated, non-native tree species. As a result, the study site’s 

climate is more aligned with a moist continental Cwb Köppen climate type than its native 

mid-latitude, semi-arid steppe climate (BSk Köppen climate type; Ross, 2013). 

 3.2.2  Tree Selection and the Measurement and Derivation of Tree Traits 

Using the City of Kamloops’ ArcGIS inventory and on-site evaluation, study trees 

were selected according to criteria outlined in section 2.2.3. Trait terminology is defined 

below; section 2.2.3 provides a more detailed methodology of trait measurement and 

derivation.  
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Figure 3.1. Climograph for the Meteorological Service of Canada’s “Kamloops A*” 
climate station (50° 42' 08" N, 120° 26' 31" W) (1981–2010 normals; Environment 
Canada, 2014). 

 

 

For each study tree, we measured '#(&(cm), tree height, ( (m), and average 

canopy width, )*&(m), then calculated projected canopy area, +), (m2), projected wood 

area, +*, (m2), canopy height-to-width ratio, (*$!'*+#,-.+/-0,..), canopy volume,  

CDE)&&(m3), and wood volume, CDE* (m3). 

Beneath-canopy skyward photographs were used to calculate leaf-on canopy cover, 

)) (%), and leaf-off wood cover, *) (%), values for the full canopy (adapted from 

Korhonen and Heikkinen, 2009).  
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The number of secondary leaders was noted (and used to calculate total number of 

leaders, Ln, at the base of the canopy); counts (but not angles) of branches intersecting 

secondary leaders were used to generate a total branch count, Bn, for the tree while angles 

of “feeder” branches intersecting only the primary leader were calculated. Four angles 

were used in final analyses: the angle of intersection of the branch and leader in the upper 

third of the canopy, AIU  (mean, deg. from horizontal), and in the full canopy, AIF  (mean, 

deg. from horizontal); and average (overall) angle from intersection to furthest extent of 

the branch in the upper, AAU (mean, deg. from horizontal), and full canopy, AAF  (mean, 

deg. from horizontal). For each tree, an overall frequency of discontinuous branch 

segments, FD, was calculated by assigning a branch a “discontinuous” rating if the inner 

or mid-third of the branch drained away from the bole. 

A quantitative bark relief index, BRI, was calculated using the ratio of the furrowed 

circumference of the tree bole to the surface (unfurrowed) circumference at breast height 

(1.3 m, or slightly higher or lower to avoid branches and deep scars). This measure 

essentially represents bark microrelief as discussed in section 2.2.3. 

A sample of leaves or leaflets (13 to 49 per tree) was sorted by size and the median 

leaf was scanned. Its area was calculated using Photoshop® CC to yield median leaf size, 

MLS  (cm2), for each tree.   

 3.2.3  Precipitation and Stemflow Measurement 

Measurement of precipitation and stemflow, SF, was made on an event basis from 

June 12, 2012 to November 3, 2013. An Onset® tipping bucket rain gauge (Model # S-

RGB-M002) connected to an Onset® Hobo® U-30 USB data logger (Model # U30-NRC) 

recorded rainfall depth and intensity. The opening of the tipping bucket (receiving 

diameter 15.4 cm, resolution 0.2 mm tip-1) was 1 m off the ground. Accompanying the 

tipping bucket rain gauge (TBRG) in the unobstructed yard of a private residence directly 

north of MIP was a manually read polyethylene gauge (diameter 29 cm, depth 36 cm, 

opening height 1 m). The tipping bucket and adjacent manually read rain gauge were 
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between 80 and 770 m from the study trees. In addition to these gauges, eight manually 

read gauges were distributed throughout MIP (gauge density ~ 0.04 km2 gauge-1). The 

furthest distance between a manually read gauge and a study tree was approximately 215 m.  

Stemflow collection collars were fabricated using black corrugated polyethylene 

hose (diameter of 3.2 cm for 32 trees and 3.8 cm for the five largest trees). After a 

lengthwise section of hose was removed, the collar was wrapped twice around the tree at 

an angle to promote drainage to the reservoir (collar lengths 1.2–5.2 m). One edge was 

stapled to the trunk and 100 % silicone was used to seal the seam and staples; collars 

were inspected and repaired regularly. Each collar drained through an intact section of 

hose to a 17-L polyethylene pail inside a 114-L lidded polyethylene tote to accommodate 

overflow; to guard against strong winds and contamination of collected SF   by rain, each 

tote was weighted and its PVC plastic cover secured with elastic cord.  

 3.2.4  Measurement and Derivation of Meteorological Variables 

In addition to logging rain depth via the tipping bucket rain gauge, the data logger 

reported the following variables every minute (equipment by Onset Computer 

Corporation):  

• wind speed (m s-1) and maximum 3-second gust speed (m s-1; S-WSA-M003); 

• wind direction (degrees clockwise from 0° = north; S-WDA-M003); 

• solar radiation (W m-2; SOLAR-RS3); 

• barometric pressure (mbar; S-BPB-CM50), and 

• temperature (°C) and relative humidity (%) (S-THB-M003).  

Event and 5-minute averages were calculated for each of these, and the latter two were 

used to derive event and 5-minute averages for vapour pressure deficit, VPD  (kPa), as 

follows: 

VPD  =  SVP  –  AVP  where 
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𝑆𝑉𝑃 = 0.611 ∙ 𝑒𝑥𝑝  
!".!"  !
!"#.!!!   and 

𝐴𝑉𝑃 =
𝑅𝐻
100 ∙ 𝑆𝑉𝑃 

where SVP is saturated vapour pressure (kPa), AVP is actual vapour pressure (kPa), T  is 

average temperature (°C) and RH is relative humidity (%). Since net radiant energy has 

been shown to be a minor contributor to evaporation of wetted canopies (see Carlyle-

Moses and Gash, 2011), an introduced evaporation coefficient, E, based on the 

aerodynamic approach to estimating evaporation from wetted surfaces (Dalton, 1802; see 

Ward and Robinson, 2000), was calculated based on VPD and wind speed: 

𝐸 =𝑊 ∙ 𝑉𝑃𝐷  

where W is wind speed (m s-1). Average wind directions and standard deviations were 

calculated through vector decomposition as described by Van Stan et al. (2011).  

Tipping bucket records were used to identify the start and end of each rain event; 

for the purposes of this study, events were separated by rain-free breaks of at least 12 

hours. By the same method, timing and duration of breaks (≥ 30 minutes without a tip) 

were documented, yielding the total duration of intra-storm breaks, DB  (h) and total rain 

duration, DR (h). Two measures of intensity were calculated: 1) 5-minute maximum 

intensity, Imax5, (mm h-1), the maximum intensity that occurred in any 5-minute period of 

the event and 2) 5-minute weighted intensity, Iwt5    (mm h-1). To derive 5-minute weighted 

averages, 5-minute (unweighted) averages were multiplied by the depth of rain that fell in 

those 5 minutes (yielding zero for rain-free 5-minute periods); these values were totalled 

then divided by total rainfall depth to give averages that more accurately reflect 

conditions during precipitation.  

Event and 5-minute average rainfall inclination angles were also calculated using 

rainfall intensity, wind speed, and relationships with drop size and terminal fall velocity 
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(Herwitz and Slye, 1995). The Laws and Parsons (1943) best-fit equation is the basis for 

droplet size: 

𝐷 = 2.23  (0.03937  𝑃𝐼)  !.!"#  

where D is median raindrop diameter (mm) and PI is rainfall intensity (mm h-1). The 

following empirical best-fit equation (Gunn and Kinzer, 1949) yields terminal fall 

velocity: 

𝑈! = 3.378 𝑙𝑛 𝐷 + 4.213  

where Uv is terminal velocity (m s-1) of any droplet of diameter D. Substituting this value 

and wind speed allows for calculation of inclination angle: 

𝑡𝑎𝑛𝑃!"# =
𝑊!"!
𝑈!

 

where Pinc is rainfall inclination angle (degrees from vertical), Wwt5 is 5-minute weighted 

average wind speed (m s-1), and Uv is terminal fall velocity (m s-1).  

 3.2.5 Data Analysis 

As described in section 2.2.4, we used exploratory cluster analysis to assign the 37 

study trees to clusters reflecting two general canopy morphologies: single-leader (n = 20) 

and multi-leader (n = 17). Herwitz (1987) and others have documented that SF drains to 

and along the undersides of upright branches, suggesting that SF production processes 

might differ in trees with single trunks vs. multiple major leaders.  

The TBRG rainfall depths were evaluated against those collected in the adjacent 

manually read rain gauge using double mass analysis (Searcy and Hardison, 1960). The 

double mass analysis found that, respectively, the slope and intercept of the regression of 

TBRG depth vs. manual gauge depth were not significantly different (α = 0.05) than 

unity or zero prior to April 1, 2013; however, and although the cause is not clear, the 
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slope and intercept of the TBRG depth vs. manual gauge depth were found to be 

significantly (p ≤ 0.05) different for the period after April 1, 2013. Thus, the following 

correction factor was applied to all recorded TBRG depths after that date: 

𝑇𝐵𝑅𝐺!"## = 1.112 ∙ 𝑇𝐵𝑅𝐺!"#$ − 0.142  

where TBRGcorr is the corrected event rain depth value and TBRGmeas is the value 

originally logged by the TBRG. 

For all valid rainfall events for each study tree in full leaf, transitional, and leaf-off 

condition, rainfall depths (mm) and corresponding SF volumes (L) were sorted from 

smallest to largest rainfall depth. Data for events with rain depths equal to or greater than 

the first event that yielded SF ≥ 0.01 L, even if some of these larger events produced no 

SF, were plotted (P in mm vs. SF in L). Linear regression yielded the threshold of SF 

initiation, P” (absolute value of the intercept divided by the slope), and the flow rate once 

P” had been satisfied (slope, QSF).  

There is precedent in the SF literature for using multiple regression to analyze the 

influences of both trait and meteorological variables (e.g., Staelens et al., 2008; Van Stan 

et al., 2014b). We elected to use stepwise-up multiple regression to identify the major 

variables influencing the dependent variables (Armstrong and Hilton, 2010), and 

addressed concerns regarding multicollinearity between independent variables by 

ensuring that r2 < 0.64 (Hair et al., 1998). All multiple linear regressions (stepwise-up) 

were run in Smith’s Statistical Package (SSP) following transformations of dependent 

and independent variables (if necessary) as described in section 2.2.4. To facilitate 

comparison of QSF for trees of widely varying sizes, leaf-on multiple regression analyses 

at the group level were done for flow rate per unit PCA, QSF PCA-­‐1 (L mm-1 m-2), as well as 

for P” and QSF. Using a total of 18 trait variables, we identified those which significantly 

(p ≤ 0.05 and p ≤ 0.10) explained variation in P”, QSF, and QSF PCA-­‐1 for each of the tree 

groups. Group A analyses used 17 variables as Ln was constant. 
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On an individual tree basis, we explored the role of actual canopy cover, ACC, 

during spring and fall using multiple regression (SSP) of SF volume on P and ACC,  

calculated as:  

𝐴𝐶𝐶 =𝑊𝐶 + 𝐿𝐹(𝐶𝐶 −𝑊𝐶)  

where LF = observed leaf fraction at event date. The influence of storm meteorology on 

SF volume was also analyzed at the tree level with multiple regression yielding an 

equation of significant (p ≤ 0.10) meteorological variables (out of 8 potential variables 

for leaf-on and leaf-off condition or 9 variables including ACC for transitional leaf 

condition). Occurrence or non-occurrence of a significant (p ≤ 0.10) meteorological 

variable in each tree’s equation formed the basis of a full-sample analysis (both groups 

combined) using a one-way ANOVA with	
  Tukey	
  HSD	
  post-­‐hoc	
  (Tukey,	
  1953;	
  see	
  Zar,	
  

1984) in IBM® SPSS® Statistics Version 22 (hereafter SPSS®) to detect associations 

between meteorological variables and canopy characteristics of trees for which they were 

influential.  

3.3  RESULTS 

 3.3.1  Precipitation Profile 

Between June 12, 2012 and November 2, 2013, 101 events with precipitation 

depths ≥ 0.2 mm were recorded; frequencies of depth by precipitation type are presented 

in Figure 3.2. A total of 394.4 mm fell: 327.9 mm as rain (86 events), 9.3 mm as mixed 

(4 events), and 57.2 mm as snow (11 events). We collected 89.8 % of this total depth and 

estimated the remainder (primarily snow) using Environment Canada data for the nearby 

“Kamloops A*” station. Frequency of rain by depth class approximated 1981–2010 

normals for Kamloops (in parentheses): 80.7 % (82.4 %) for 0.2 to 5 mm, 10.2 % 

(13.4 %) for 5 to < 10 mm, and 9.1 % (4.3 %) for ≥ 10 mm. The higher frequency of 

larger events reflects that the study extended through two summers: July and August have 

the highest rain-day values for storms ≥ 10 mm. 
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 3.3.2  Influence of Canopy Characteristics 

In total, 37 isolated trees of 21 cultivated species were chosen (10.2–68.7 cm DBH, 

Table 2.1). Table 2.2 summarizes means and ranges for these trait metrics for each group. 

Derived values for P”, QSF, and QSF  PCA-­‐1 for individual Group A and B leaf-on trees are 

provided for reference in Tables A.1 and A.2, respectively, along with measured and 

calculated trait variables. Leaf-on, transitional, and leaf-off P” and QSF values are listed in 

Tables A.3, A.4, and A.5. Results of multiple regressions of P”,  QSF,  and QSF  PCA-­‐1 for 

Group A and B trees on canopy trait variables are presented in Table 3.1.  

 

Figure 3.2. Frequency of precipitation events by type and depth class. 

 

For rain events < 3 mm while trees were either in full leaf or completely leafless, 

SF volume was plotted against rain depth. Figure 3.3 depicts, for four variously sized 

trees (two each from Groups A and B), the patterns that were evident for most trees. 
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Table 3.1. Multiple regression equations for stemflow initiation thresholds, P” (mm), 
flow rates post-initiation, QSF (L  mm-­‐1  ) and flow rates per unit projected canopy area  
QSF  PCA-­‐1,  (L  mm-­‐1  m-­‐2) as functions of tree morphological traits, generated for  
single-leader (Group A, n = 20) and multi-leader trees (Group B, n = 17). 

 

 

Stemflow from leafless trees generally started at lower threshold rain depths than 

when leaves were present, and when it was produced, volumes were often higher for 

leafless trees at a given rain depth. For rain depths > 2 mm, the pattern was less 

consistent with SF production from leafed canopies occasionally exceeding that for 

leafless trees.  

Table __. Multiple regression equations for stemflow initiation thresholds (P”), flow 
rates post-initiation (QSF), and flow rates per unit CPA!(QSF/CPA,(l/m2) as functions of 
tree morphological traits, generated for single-leader (group A, n = 20) and multi-leader 
trees (group B, n = 17). 
!
Equation R2( SEE( p(≤!
P”!!Group A ( (  

−18.10! 1
!"# + 1.34!"#!+2.56 0.528 0.69 0.05 

−11.85! 1
!"# − 313.76! 1!! + 1.57!!"#

! + 32.19! 1!"# 0.660 0.62 0.10 

P”!  Group B    

−10.63! 1!"# + 2.34 ln!! 0.546 1.31 0.05 

−9.11! 1!"# + 2.72 ln! − 0.010!!!! 0.632 1.22 0.10 

QSF!!Group A!    

(0.23! ! + 2.62!!"# − 0.015!!! + 0.12 ln!"#! − 0.47!
1

!"# − 2.64!)
! 0.860 0.16 0.05 

QSF   Group B    

! !.!"!!!!!.!"!!!"!!"!!!.!"!!"#!!!!".!"! !!"#!!.!!!"!!"
!

 0.952 0.22 0.05 

QSF!CPA11  Group A    

! !.!!!"!!"#!!!!!.!"!! !!"#!!!!.!"!
!

!"#!!.!"  0.853 0.33 0.05 

! !.!!!"!!"#!!!!!.!"!!!"!!"!!!.!"! !!"#!–!!.!"!!!"!!!
!!!.!"!!!"!!"#!!!.!!! !

!"#  0.931 0.25 0.10 

QSF!CPA11  Group B(    

−0.062 ln!" + 1.48! − 07!"! − 0.10!!"# + 1.15! − 07!!"#! + 0.0004!!!! + 0.25 0.901 0.013 0.05 

!
!
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 3.3.3  Influence of Meteorological and Seasonal Factors  

For leafed and leafless trees with data for ≥ 9 rain events, SF volume was regressed 

on eight core meteorological variables; a ninth variable, ACC, was used for trees in leaf 

transition with ≥ 10 events. Table 3.2 indicates if meteorological variables were 

significantly positively or inversely related to SF volume for all leaf conditions. Squares, 

circles, and triangles, in columns beneath each meteorological variable, represent leaf-on, 

leaf-transition, and leaf-off conditions, respectively; solid symbols indicate a positive 

correlation, while open symbols reflect an inverse relationship. Where an “x” symbol is 

shown, this variable was not significant (p ≤ 0.10) in the regression. Finally, blank cells 

indicate that there was insufficient data to run the regression for that tree in that leaf 

condition. Corresponding regression equations for individual trees are provided in Tables 

A.6, A.7, and A.8. 

For each leaf condition, at least one meteorological variable’s presence in a group 

of trees’ regression equations was associated with a significantly (p ≤  0.10) different trait 

mean compared to the group for which that variable was absent. Table 3.3 summarizes 

these relationships between meteorological and trait variables for our study trees. 

Figure 3.4 presents graphs for a subset of trees (representative of most study trees) 

showing the general tendency for SF volumes to be greatest for mixed precipitation, 

intermediate for rain, and least for snow events. For example, for tree A-2, less than 

0.4 mm of SF each was measured for 5.8-mm (SWE) and 6.4-mm (SWE) snow events 

while a 5.3-mm (SWE) mixed event produced 2.84 L and a 6.7-mm rain event produced 

3.33 L of SF. For A-7, the highest volume of SF for events < 2.2 mm was 4.83 L for a 

1.6-mm (SWE) mixed event. All other rain events in this depth range produced ≤ 2.59 L 

of SF (less than 54 % of the mixed-event volume). In even greater contrast, a 3.2-mm 

(SWE) snow event produced no SF for B-2 whereas 4.0 mm (SWE) of mixed 

precipitation generated 5.76 L of SF. However, the same tree produced only 0.22 L of SF 

from a larger 5.3-mm (SWE) mixed event. 
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Figure 3.3. Comparison of stemflow volume (L) produced from rain events less than  
3 mm by trees in full leaf (!) vs. leafless (") conditions. 
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Table 3.2. Summary of meteorological variables significantly (p ≤ 0.10) related to 
stemflow volume during leaf-on (square), transitional (circle), and leaf-off (triangle) 
conditions per regression equations presented in Tables A.6, A.7, and A.8. 

	
  
	
    

Tree ID P DR DB Iwt5 Imax5 Pinc Wwt5 VPD11 ACC
A-1 !" ### ## ## ### ### !## ###

A-2 !" ### #$# ### ### ### !## !## #

A-3 !" ### ### ### ### ## ### ###

A-4 !"# ### #$# ### #$# !## #" !## $

A-5 !" ### $## ### ### !# ### !## $

A-6 !" ### %# ### ## !## ## !## $

A-7 !" ### ### ### ### !## ## ###

A-8 !" ### ### ### ### ### ## ###

A-9 !" ### ## ### ## !## ## !##

A-10 !" ### #$# ### ## !## #" ### $

A-11 !" ### ### ### ### !" ### !##

A-12 !" ## ## ## ## ## ## #$ $

A-13 ! # # # # ! # !

A-14 !" ### ### ### %# !## !" !##

A-15 !" ### ### ### ### ### !# ##

A-16 !"# ### ### ### ## ### ## ## #

A-17 !" ## #$ ## #$ !# ## ## $

A-18 ! # # # # # # !

A-19 #" !## #$# ### !$# ### ## ## $

A-20 !" ## # # # # ! !

B-1 #"# !## ### ## #"# !## ### ### #

B-2 !" ### ### ### ### !# ### !##

B-3 !" ### %# !# !## ### !## !## $

B-4 !" ### ### ### ### ## #"# ### #

B-5 !" ### ## ### ### ### !## ###

B-6 !" ### ### ### ### ### ## ### #

B-7 ! # ! ! # # # !

B-8 ! # # # # ! # !

B-9 !" ### % # ### ### ### !# !"

B-10 !" ### ### ### ### ### ## % #

B-11 !" ### ### ### ### # !" !##

B-12 ! # # # # # # #

B-13 ! # # ! ! # # #

B-15  "  ##  ##  ##  ##  ##  ##  ##

B-17 ! # # # # # ! !

Legend for occurrence and sign of regression coefficients (significance level per individual equations, see Tables A.6, A.7, and A.8): 
   Leaf-on: ! = positive,  % = negative, #= non-occurrence
   Leaf transition: " = positive, $ = negative, # = non-occurrence
   Leaf-off:  = positive, = negative, # = non-occurrence
   Blanks reflect trees and leaf conditions for which there was insufficient data for regression analysis (e.g., too few events were  
      available for analysis of B-14, B-15, and B-16 in any leaf condition).
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Table 3.3. Summary of means and standard deviations for canopy traits of trees grouped 
by whether or not each meteorological variable was significant (“occurred”, p ≤ 0.10) in 
the individual tree’s SF volume regression equation (between-group differences analyzed 
via one-way ANOVA, p ≤ 0.10). 

Meteorological Variable 
(sign indicates positive/ 
negative relationship with 
stemflow volume)	
  

Trait Variable	
   Non-occurrence 
group mean ± SD 

(n) 

Occurrence group 
mean ± SD (n)	
  

p-
value	
  

LEAF-ON CONDITION 
+  Rainfall intensity (5-min  
 weighted average) 

Bark relief index  1.10 ± 0.08 (32)  1.26 ± 0.22 (2) 0.018 
Frequency (discontinuity)  0.15 ± 0.15 (32)  0.36 ± 0.33 (2) 0.081 

+ Rainfall inclination 
 angle (5-min weighted  
 average) 

DBH (cm)  32.9 ± 16.9 (21)  20.4 ± 7.4 (13) 0.018 

Average canopy spread 
(m) 

 8.4 ± 4.0 (21)  6.1 ± 1.9 (13) 0.054 

Canopy volume (m3)  690.4 ± 895.6 (21) 214.8 ±158.5 (13) 0.068 
Wood volume (m3)  75.9 ± 103.4 (21)  15.2 ± 18.2 (13) 0.045 
Intersection angle, full tree 
(deg. above horizontal) 

 41.9 ± 13.0 (21)  49.0 ± 9.9 (13) 0.100 

Branch count  46.9 ± 20.8 (21)  32.2 ± 15.2 (13) 0.035 
+ Wind speed (5-min 
 weighted average) 

Canopy volume (m3)  382.6 ± 408.6 (26) 917.7 ± 1322.1 (8) 0.074 
Wood volume (m3)  35.7 ± 46.0 (26) 107.8 ± 152.4 (8) 0.037 
Median leaf size (cm2)  21.6 ± 13.4 (26)  35.7 ± 26.4 (8) 0.050 

+ Inverse vapour 
 pressure deficit 
 (variable transformed) 

Average angle, full tree 
(deg. above horizontal) 
 

 47.6 ± 18.2 (18)  37.1 ± 14.2 (15) 0.080 

TRANSITIONAL LEAF CONDITION 
– Total break duration (h) No. branches, full tree  42.7 ± 21.4 (6)  25.3 ± 9.7 (6) 0.100 

No. leaders at canopy 
base 

 1.83 ± 1.0 (6)  1.0 ± 0.0 (6) 0.065 

LEAF-OFF CONDITION 
+ Rainfall inclination 
 angle (5-min weighted  
 average) 

Wood cover (%)  27.0 ± 10.3 (20)  14.6 ± 2.7 (5) 0.015 

+ Inverse vapour 
 pressure deficit 
 (variable transformed) 

DBH (cm)  21.7 ± 12.0 (21)  36.7 ± 12.3 (4) 0.032 

Tree height (m)  9.1 ± 2.5 (21)  12.2 ± 1.5 (4) 0.027 
Wood cover (%)  22.8 ± 10.3 (21)  33.4 ± 7.0 (4) 0.062 
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Figure 3.4. Graphs of measured !" generated from rain events (!) and from snow–water 
equivalent (SWE) depths for snow (") and mixed (!) precipitation events.  
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3.4  DISCUSSION 

 3.4.1  Canopy Traits Influencing Stemflow from Rain in Leaf-on Condition 

Derived measures of stemflow—SF as a percentage of incident rain on a projected 

canopy area, PCA, basis, SF %, and the SF funneling ratio, FR (Herwitz, 1986)—are 

commonly used to report and compare SF production (e.g., Levia and Frost, 2003; 

Carlyle-Moses et al., 2010; Germer et al., 2010). Prior to discussing our findings in these 

terms, we examine the influence at the tree group level of canopy traits on threshold rain 

depth for SF initiation, P” and post-initiation SF rate, QSF (the combination of which 

determines SF volume), as well as on QSF   standardized per m2 PCA  (QSF  PCA-­‐1).  

 3.4.2  Stemflow Initiation Threshold 

Examination of the multiple regression equations in Table 3.1 reveals some 

common factors within and between groups for different dependent variables. Firstly, P” 

was directly related to diameter at breast height, DBH, but only for single-leader trees; on 

the other hand, bark relief index, BRI, was positively related to P” for both single- and 

multi-leader trees. The influence of BRI  is apparent when comparing P” for Group A and 

B trees of similar size whereby smoother bark (in concert with other traits) is associated 

with lower P”  :  

• A-6 (DBH = 15.1 cm, BRI = 1.01, P” = 2.0 mm) vs. B-1 (DBH = 15.2 cm, 

BRI  =  1.22, P” =  3.6 mm) 

• A-9 (DBH = 19.0 cm, BRI = 1.09, P” = 3.7 mm) vs. B-3 (DBH = 18.8 cm, 

BRI = 1.01, P” =  1.3 mm) 

• A-18 (DBH = 43.0 cm, BRI = 1.15, P” = 3.9 mm) vs. B-11 (DBH = 43.0 cm, 

BRI = 1.25, P” = 3.8 mm) 

For Group A, additional trait variables were significant at the p ≤ 0.10 level: 

canopy cover, CC (positive) and angle of branch intersection in the upper canopy, AIU 
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(negative, such that higher P” was associated with lower branch angles as measured from 

horizontal). Neither of these variables was significant (p ≤ 0.10) for multi-leader P” while 

tree height was a factor only for Group B trees. Finally, the number of leaders was 

inversely related to P” for the multi-leader trees. 

In this study, the smallest events to generate SF ≥ 0.1 % of incident rainfall were 

1.0 mm for A-1 and 0.9 mm for B-3 and B-9. These compare to mean SF initiation 

thresholds of 3.4 ± 0.3 mm for beech and 10.9 ± 1.2 mm for oak in a temperate mixed 

forest (André et al., 2008b), > 1 mm and > 4 mm for urban Eucalyptus saligna and E. 

nichollii trees, respectively (Livesley et al., 2014), and 1.4−4.8 mm for six species in a 

laurel forest in the Canary Islands (Aboal et al., 1999a). Study trees with the lowest 

derived thresholds included A-1 (small DBH with smooth bark and numerous, steeply 

inclined branches), A-3 (small, smooth bark, high CC), B-3 (small, smooth, with 

numerous branches), and B-9 (medium-sized but extremely smooth-barked with many 

leaders). These examples serve to confirm the importance of conducive traits identified 

by others including smooth bark (Levia and Herwitz, 2005; Van Stan and Levia, 2010) 

and high branch inclination angles (Herwitz, 1987; Xiao et al., 2000; Levia et al., 2013). 

As we did for single-leader trees, André et al. (2008) found that lower P” (reflecting 

lower apparent storage capacity) was associated with smaller DBH trees; for our multi-

leader trees, tree height, H, was highly correlated with DBH (Spearman r  ≤ 0.01), and 

may have been acting as a proxy for the latter size-related variable. The fact that the 

number of leaders converging at the base of the canopy, Ln, was inversely related to P” 

for Group B suggests that the benefits of having multiple major SF flowpaths to the base 

of the canopy outweighed the disadvantages associated with increased wood area to be 

saturated, particularly for smooth-barked trees. 

 3.4.3  Stemflow Rate 

While QSF   was significantly (p ≤ 0.05) correlated with BRI in both Group A and B 

trees, it was positively correlated for single-leader trees, but inversely related for multi-
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leader trees. This implies that, for single-leader trees, more deeply furrowed (now 

saturated) bark may contributes to higher SF rates, particularly if furrows are linear rather 

than diamond-shaped or forked (Levia and Herwitz, 2005). In fact, the five highest QSF 

values among Group A trees (1.97–3.61 L mm-1) were for trees with moderate bark relief 

(BRI ranging from 1.15–1.20) and bark with linear furrows. The highest QSF  PCA-­‐1 value 

was for A-14, an English columnar oak with linearly furrowed bark of moderate relief. 

Others have documented the promotion of SF production (and resistance to evaporative 

forces) by such linear microrelief, despite its association with higher normative bark 

water storage and delay of SF initiation (Levia and Herwitz, 2005).Our findings confirm 

that, certainly for single-leader trees, bark with moderate relief and linear furrows was 

associated with high QSF. Most smooth- and flaky-barked trees had lower rates, although 

two of the highest QSF  PCA-­‐1 values were for trees with extremely low BRI, suggesting 

that other traits (such as high branch angles) in association with bark relief may 

contribute to high rates on a per-canopy-area basis.  

It is possible that greater wood surface areas associated with multi-leader trees may 

result in a gradual increase in QSF   during the time between satisfaction of P” (SF begins) 

and full saturation, but as discussed below, Ln   appeared to be more important than any 

other factor for Group B trees. Tree height explained more variability in QSF (57 %) than 

any other factor for Group A trees, though it was not significant (p ≤ 0.10) for Group B 

trees and is not identified frequently in the literature (e.g., Germer et al., 2010). It is 

possible that H was acting as a proxy for DBH (as discussed above) or other closely 

correlated size-related variables in this study. Branch count, Bn, was inversely related to 

QSF in single-leader trees only. Reduced SF with more branches was also found by 

Herwitz (1985), who attributed this effect to increased storage capacities, but Návar 

(1993), Aboal et al., (1999b), and Levia et al. (2013) all found higher Bn to promote SF. 

Specifically, Levia et al. (2013) concluded that woody biomass, branch count (both per 

unit PCA), and mean inclination angles were the most important factors governing SF  

PCA -1 in their study of European beech saplings. For Group A trees, higher canopy 
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volume, VolC  , was associated with higher QSF, which is consistent with the findings of 

Martinez-Meza and Whitford (1996) for certain desert shrubs, Crockford and Richardson 

(1990) for pine and eucalypts (crown size per DBH), and Aboal et al. (1999b) for a laurel 

forest. Aboal et al. (1999b) also noted that small leaves contributed to more efficient SF 

production, counter to the positive relationship between median leaf size, MLS, and QSF 

for our Group A study trees. For Group B trees, Ln explained 52 % of variation in QSF    

while WC was also positively related; given that Ln has not been examined to our 

knowledge (although both factors are consistent with findings of Levia et al. [2013] that 

woody biomass is associated with high SF), we recommend further study to refine 

understanding of its potential role. The regression equation for Group B QSF suggests that 

Ln may be of particular importance when a tree also has smooth bark and high full-

canopy intersection angles, AIF, and when canopy width, CW, is relatively small 

(minimizing the distance that SF needs to travel to reach the bole). Few specific results 

are published on CW, but many authors corroborate the importance of associated traits 

such as high branch inclination angles for SF in trees and shrubs (Martinez-Meza and 

Whitford, 1996; Crockford and Richardson, 2000; Barbier et al., 2009; Levia et al., 2013; 

Van Stan et al., 2014b). Herwitz (1987) observed that > 80 % of impacting rain became 

branchflow for branch angles > 60° in the laboratory, but there is a “tipping point” at 

which the benefits of high branch angles in conducting SF will be offset by a tree’s 

smaller projected canopy area (Pypker et al., 2011; Levia et al., 2013). 

Derived QSF for single-leader trees ranged from 0.33 L mm-1 (A-3: small, smooth, 

relatively few branches) to 3.61 L mm-1 (A-20: tallest study tree, large volume, moderate 

BRI, disproportionately low branch count). For multi-leader trees, QSF   ranged from 

0.48 L mm-1 (B-4: moderate BRI, only one secondary leader, low wood cover, WC, and 

AIF, relatively high CW for its size) to 7.45 L mm-1 (B-9: very smooth bark, many 

leaders, moderate WC, relatively low branch angles, average CW). The low P” and high 

QSF for B-9 contribute to exceptional SF % and FR values as discussed below despite 

moderate branch angles and a broad canopy. This tree’s early and voluminous SF 
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production in this study is consistent with findings of others studying beech species (e.g., 

Levia et al., 2013, 2010; Staelens et al., 2008; Van Stan et al., 2014b). Based on 

observations of SF on the study tree’s trunk (Videos B.1–B.4), it is possible that the bark 

may be not only smooth but hydrophobic, a condition that may have been enhanced by 

the presence of water-repellent lichen (Shirtcliffe et al., 2006) which we observed along 

preferential flowpaths on the trunk of B-9 (and other study trees). Water repellency in 

Acacia bark has been linked to presence of a waxy substance called suberin (Borgin and 

Corbett, 1974), which has also been extracted from beech bark (Perra et al., 1993).  

For comparison, a sample of SF rates observed by others includes 0.08 ± 0.04 L mm-1 

for oak and 0.09 ± 0.02 L mm-1 for beech in a mixed stand (André et al., 2008b), and a 

range of 0.070 ± 0.011 to 0.172 ± 0.013 L mm-1for five tropical tree species (Park and 

Cameron, 2008). The derived rate for B-9 in our study is over 43 times greater than the 

highest rate calculated by Park and Cameron (2008), which even the lowest rates for our 

study trees exceed. Researchers in urban environments have long been aware that SF 

rates and yields tend to be greater for isolated trees (e.g., Xiao et al., 2000; David et al., 

2006; Guevara-Escobar et al., 2007) though the magnitude of this effect depends on 

climate, rainfall depth, and storm meteorology, as well as tree species and size. In 

general, gains due to unobstructed precipitation from all directions more than offset 

losses from an open-grown canopy to evaporative forces (Gash et al., 1995) and direct 

wind that can dislodge potential SF from leaves and woody surfaces.  

For QSF    PCA-­‐1, BRI was again positively related for Group A trees and inversely 

related for Group B trees; standardizing the QSF rate per unit PCA did not remove these 

effects. Angle of intersection (full tree) explained over 73 % of variation in QSF  PCA-­‐1 for 

Group A and was also a positive factor for Group B; this once again agrees with the 

results of many studies cited above (e.g., Levia et al., 2013), and confirms that this factor 

remains highly influential once rate is standardized per unit PCA. Remaining factors for 

Group A were MLS and WC (both positive) and Bn and DBH (both inverse) of which WC 

was inversely related to QSF    PCA-­‐1 for Group B (WC appears to promote SF when there’s 
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a primary bole, but suppresses it when multiple leaders convey flow to the base of the 

canopy). The inverse relationship between DBH and QSF  PCA-1 indicates that single-leader 

trees with lower basal areas tended to have higher rates per PCA, as well as lower P”, 

meaning that for small events especially, they are likely to out-produce larger-DBH trees. 

Canopy width explained 38 % of variability in QSF    PCA-­‐1 for Group B trees; given that it 

was inversely related, this likely reflects that traits associated with narrower trees (e.g., 

high branch angles and CC) promote SF in multi-leader trees. The final positive factor for 

Group B trees, one also significant (p ≤ 0.10) for P” and QSF, was Ln: more leaders meant 

higher yields due to both lower thresholds and higher rates. Highest derived QSF    PCA-­‐1 for 

Group A trees was 0.202 L mm-1 m-2 for A-14 (the tightly columnar oak with relatively 

high BRI and WC as well as exceptionally high branch angles) and for Group B was 

0.113 L mm-1 m-2 for B-9 (the American beech with very low BRI and numerous leaders 

but moderate values for other conducive traits).  

 3.4.4  Stemflow Percent 

Mean SF % values for Group A trees for the 2 to < 5 mm, 5 to < 10 mm, and 

≥ 10 mm rain depth classes were 0.9 ± 0.9 %, 2.8 ± 3.3 %, and 3.1 ± 2.8 % while for 

Group B trees, mean SF % values for these rain depth classes were 0.8 ± 1.2 %,  

2.0 ± 2.5 %, and 2.7 ± 2.6 %, respectively. The highest mean SF % values for individual 

Group A trees for the 2 to < 5 mm, 5 to < 10 mm, and ≥ 10 mm rain depth classes were  

3.6 ± 4.8 % (A-15), 12.0 ± 10.1 % (A-15), and 12.3 ± 8.4 % (A-14). For Group B, the 

highest means in the same depth classes were 4.3 ± 3.6 %, 9.6 ± 6.7 %, and 9.9 ± 1.4 %, 

all for B-9. Event maximum SF % for the single-leader and multi-leader groups, respect-

ively, were 27.9 % for A-15 for a 5.2-mm event and 18.7 % for B-9 for an 8.8-mm event.  

For context, Livesley et al. (2014) observed average SF  % values of 0.2−0.3 % and 

1.5−1.7 % for E. nichollii and E. saligna, respectively, over three years in Melbourne, 

Australia. Guevara-Escobar et al. (2007) measured SF  % of 0−5.7 % (mean 2.20 %) 

beneath a Ficus benjamina tree in Queretaro City, Mexico. Levia et al. (2013) reported an 
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average SF % of 2.4 ± 1.5 % for the European beech saplings in east-central Germany, 

while Staelens et al. (2008) found SF % ranging from 3.3 % for precipitation depths of 

2 to < 5 mm to 8.9 % for depths of 15−35 mm with an average of 6.4 % for a dominant 

beech tree in Belgium. Van Stan et al. (2014a) found mean SF % of 0.9 % for yellow 

poplar in contrast to 5.3 % for American beech in the northeastern United States, a 

difference they attributed primarily to steeper branch angles and smoother bark (i.e., 

lower canopy storage capacity) of beech canopies. High branch angles (> 67°) were 

measured for both A-14 (English columnar oak) and A-15 (Armstrong Freeman maple) 

(these two trees had by far the greatest height-to-width ratios in our study); A-15 was 

smooth-barked, but A-14 had convoluted bark with linear furrows, an illustration of the 

apparent advantage of furrowed bark once P” is satisfied. Once again, the American 

beech (B-9) out-produced all Group B trees in terms of SF  % means and event 

maximums, reflecting the combination of conducive traits noted above including smooth 

bark and many leaders fed by moderately angled branches.  

 3.4.5  Funneling Ratios 

The highest mean FR  values for individual trees for the 2 to < 5 mm, 5 to < 10 mm, 

and ≥ 10 mm rain depth classes were, respectively, 31.5 ± 20.9 (A-5), 50.7 ± 33.6 (A-1), 

and 58.6 ± 12.0 (A-5) for Group A trees and 24.1 ± 19.9, 53.5 ± 37.1, and 81.3 ± 64.9, all 

for B-9. These compare to means of 13.0 ± 1.3 and 53.0 ± 4.0 for two American beech 

trees with DBH 74.9 cm and 10.3 cm, respectively (Levia et al., 2010) and a maximum 

mean FR of 47.2 for five intermediate-sized beech trees over 10 months (Van Stan and 

Levia, 2010). Gómez et al. (2002) documented funneling ratios of 51, 60, and 85 over  

12 rain events for three olive trees. Event maximum FR values for Group A and B trees, 

respectively, were 117.8 for A-3 for a 9.7-mm event and 196.9 for B-9 for a 25.6-mm 

event, exceeding values reported in the literature for trees which include 100.6 for a  

10.3 cm DBH beech during a 2.5-mm rain event (Levia et al., 2010) and 71 for small 

palm trees (Germer et al., 2010). A detailed discussion of factors influencing SF  % and 

FR is provided in Chapter 2. Once again, we expect that the absence of neighbouring 
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canopies for our study trees enhanced the effects of conducive canopy architecture and 

exposure to wind-driven rainfall as discussed below. 

 3.4.6  Influence of Leaf Condition on Stemflow from Rain 

The tendency of leafless trees in both groups to produce SF at smaller rain depths 

and in greater quantities for a given rain depth < 3 mm compared to full leaf condition 

(Figure 3.3) is consistent with the significance (p ≤ 0.10) of actual canopy cover, ACC, in 

regression equations for over half of the study trees analyzed in transitional leaf states 

(Table A.7): SF volume varied inversely with ACC for these trees in our climate. While 

many researchers have observed this pattern (Helvey and Patric, 1965; Xiao et al., 2000; 

André et al., 2008; Staelens et al., 2008), others have found the reverse (Liang et al., 

2009b) or no significant difference between seasons (Deguchi et al., 2006). The observed 

pattern of increased SF yields from defoliated trees was less distinct as rain depth 

increased, implying that storm characteristics and other canopy traits may supersede ACC 

in importance. For example, Van Stan et al. (2014b) found that 1) presence of leaves 

increased direct associations between SF and rainfall intensity for yellow poplar and 

American beech; 2) a positive relationship between SF and wind speed for leafed 

canopies switched to an inverse one for leafless canopies; 3) beech exhibited 

strengthened differences between leaf states for SF−rainfall depth and SF−wind speed 

associations; and 4) relationships were further modified by DBH class. 

 3.4.7 Meteorological Influences on Stemflow from Rain for Various Leaf Conditions 

Table 3.2 shows the dominant influence of rain depth, P, on SF volume for 

individual trees: in only two cases did rain duration (usually closely correlated with 

depth) supercede P. This finding is supported by most studies including André et al. 

(2008b) for oak and beech and Levia et al. (2010) and Van Stan et al. (2014b) for beech 

and yellow poplar. Xiao et al. (2000) made the distinction that SF for saturated canopies 

was tightly controlled by P  while SF from unsaturated canopies reflected storage capacity 

70



 

	
   	
  

and the various morphological and meteorological factors associated with wetting-up. 

Carlyle-Moses and Price (2006) found that FR increased with greater rain depths up to a 

threshold for a growing-season mixed deciduous forest; once this level of saturation was 

reached, the authors speculated that flowpaths were overloaded and more intercepted rain 

was diverted to throughfall, TF.  

Break duration was inversely related to SF (except for B-7), and was significant  

(p ≤ 0.10) for various trees and leaf conditions. While some studies have explored intra-

storm variability of SF (e.g., Levia et al., 2010), very few have quantified the influence of 

storm breaks. For an oak−beech stand, André et al. (2008b) did discern that while SF rate 

was not significantly affected by meteorological conditions preceding a storm event, 

storage capacity and rainfall threshold appeared to increase with the ratio of potential 

dry-period evaporation to preceding rain volume. In light of our findings, this relationship 

may also apply to intra-storm breaks. 

Weighted 5-minute rainfall intensity was positively related to SF for only the 

smallest single-leader tree in leaf-off condition, but was significant (p ≤ 0.10) for a few 

multi-leader trees in all except transitional leaf states. Maximum 5-minute intensity was 

inconsistent, being positively and inversely related to SF for trees in both groups and in 

all leaf conditions. According to Levia and Frost (2003) and exemplified by Carlyle-

Moses and Price (2006) for red oak, sugar maple, and American beech, SF is often found 

to vary inversely with rainfall intensity; on the other hand, Van Stan et al. (2014b) 

observed positive correlations between SF and rainfall intensity for American beech and 

yellow poplar, but emphasize that tree size, bark relief, and other meteorological factors 

interact with intensity in complex ways. The variability in our results with respect to 5-

minute weighted and maximum intensity likely reflects the morphological diversity of 

our study trees (37 individuals of 21 species and widely ranging sizes) and 

meteorological variability associated with our semi-arid climate. 

When it was significant (p ≤ 0.10), rainfall inclination angle, Pinc, was always 

positively correlated with SF, occurring frequently for Group A trees and occasionally for 
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Group B trees in leaf-on and leaf-off but not transitional states. Herwitz and Slye (1995) 

found differential SF generation from rain inclined > 19° from vertical across varying 

storm depths, durations, and intensities. Using this angle to categorize rainfall as inclined 

or not, Van Stan et al. (2011) found significant correspondences between wind-driven 

inclined rain and SF production in American beech and yellow poplar for almost all storm 

events. They observed preferential SF generation in both species when winds were from 

particular directions, and noted that the vertically deeper canopy (i.e., greater effective 

canopy area) of beech trees enhanced efficiency of inclined rainfall capture and funneling 

as SF. Among our trees, Pinc was a significant (p ≤ 0.10) factor for SF volume for highly 

columnar A-14 in leaf-on condition, but there was no consistent association with greater 

height-to-width ratios. In our study, event average Pinc was ≥ 20° for only 3 of 60 rain 

events (5 %), 10° to < 20° for 20 % of events, 5° to < 10° for 30 % of events, and < 5° for 

45 % of events: the significance (p ≤ 0.10) of Pinc for many trees in leafed and leafless 

conditions suggests that SF in isolated deciduous trees may be sensitive to rain falling at 

less inclined angles (from vertical) than observed in forest studies. 

With two exceptions, 5-minute weighted average wind speed, Wwt5, was always 

positively related to SF  ; it occurred more commonly for leaf-on and leaf-off than 

transitional conditions. This is in agreement with findings of Xiao et al. (2000) for 

isolated oak and pear trees and André et al. (2008b) that higher wind speeds during rain 

enhanced SF production for oak and beech, apparently by reducing SF initiation 

thresholds. This direct association was strongly demonstrated by Van Stan et al. (2014b) 

for three size classes of American beech and yellow poplar during the growing season; 

for leafless canopies (particularly smaller ones), however, SF was inversely related to 

wind speed, possibly reflecting increased evaporation from bark in the absence of shelter 

from leaves. 

After P, inverse vapour pressure deficit, VPD (i.e., transformed to enhance linearity 

for regressions), was the second-most common factor influencing SF volume, certainly 

for leaf-on trees; since the inverse variable influenced SF positively, higher values of 
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VPD were associated with lower SF volumes. Staelens et al. (2008) documented this 

relationship for a beech forest while Van Stan et al. (2014b) confirmed the inverse effect 

of VPD for leafed American beech and yellow poplar, noting that the effect was enhanced 

for taller trees.   

 3.4.8  Stemflow from Snow and Mixed Events Compared to Rain 

Figure 3.4 shows actual SF volumes measured from four selected trees for four 

mixed and 11 snow events graphed along with SF generated by rain events in the same 

depth range using snow-water-equivalent (SWE) on the x-axis. The sample size is small 

and there is high variability in the actual SF values from mixed and snow events, but, 

with few exceptions, more SF was generated from mixed events (over three times more 

for some events) and less from snow events (not uncommonly zero or close to it). While 

data is limited, it seems that mixed precipitation in our climate may have properties 

relating to air and bark temperature that optimize adhesion (as opposed to snow that is 

less likely to adhere and subject to being dislodged by wind). Herwitz and Levia (1997) 

found substantial mid-winter SF drainage from bigtooth aspen in the northeastern United 

States (5−10 % of incident precipitation per PCA, despite below-zero temperatures), 

particularly when snow events coated bare trees in icy glaze; they theorized that the 

bark’s low albedo promotes melting and drainage of intercepted snow and ice, a process 

subject to much lower VPD than in warmer seasons. Consistent with our findings, they 

also noted that SF from snow did not reliably increase with precipitation depth (as for 

rain), a lack of predictability that was even more pronounced for seven trees of three 

different deciduous species in Massachusetts (Levia, 2004). For a northern red oak 

examined in detail by Levia (2004), funneling ratios associated with snow events were 

significantly lower than for other precipitation types (as in our study), yet mean ratios 

(± 1 SE) overlapped for rain, rain-to-snow, and snow-to-rain, suggesting that 

precipitation type was less influential than other meteorological factors, particularly 

duration and intensity of precipitation in concert with high wind speeds.  Our observation 

that mixed events often resulted in more SF than comparable rain and snow events is 
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consistent with findings of Levia (2003) who related low levels of SF chemical 

enrichment for rain, sleet, and snow events to short residence times (for all three) as well 

as low interception for sleet and snow, a factor that we suggest is particularly limiting for 

small trees. 

Based on observations that larger trees in our study retained more snow than small 

ones, canopy architecture can be important. For example, we noted that smaller trees had 

minimal reservoirs at branch intersections, limited branch surface area, smaller projected 

bole area in the face of wind-driven snow, and smoother bark (which decreases storage 

capacity and also limits snow retention associated with rougher bark). Enhanced SF was 

observed for upright bigtooth aspen branches (Herwitz and Levia, 1997). Though they are 

beyond the scope of the current study, a number of hypotheses and conceptual models 

were proposed by Levia and Underwood (2004) related to snowmelt-induced SF, a 

process potentially influenced by 1) albedo of snow-covered and snow-free wood 

surfaces, 2) snow-to-rain nature of the precipitation (vs. pure snow), and 3) longwave 

radiative flux within the canopy.    

3.5  CONCLUSION 

This study of isolated deciduous park trees confirms the volumetric importance of 

stemflow and the influence of various canopy traits and meteorological characteristics on 

stemflow initiation thresholds and stemflow rates. Smooth bark and steeply inclined 

branch angles are among traits previously associated with high stemflow yields; we also 

found that stemflow initiation threshold rain depth decreased and stemflow rate increased 

with higher numbers of leaders converging at the base of a canopy. These traits were 

apparent in the sole American beech in our study that exhibited the lowest stemflow 

initiation threshold, highest stemflow rate, and highest mean and event stemflow % and 

funneling ratio values among multi-leader trees. Single-leader trees tended to have higher 

stemflow yields if they had 1) high branch angles, 2) low diameter at breast height and 

canopy cover  (associated with lower thresholds), 3) greater tree height, bark relief index 
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(particularly when furrows are linear), canopy volume, and median leaf size, and 4) fewer 

branches (associated with higher stemflow rates). Given that bark relief increased both 

the stemflow initiation threshold and rate for single-leader trees, resultant stemflow yield 

depended on rainfall depth, duration, and other storm and trait variables.  

Despite the diversity of study tree species and size, patterns emerged regarding 

event meteorology including 1) the dominance of rainfall depth, 2) the influence of 

inclined rainfall at smaller angles from vertical than previously observed, and 3) the 

already-established relationships between SF  yield and wind speed (positive) and vapour 

pressure deficit (inverse). The effects of intra-storm break duration and rainfall intensity 

were less clear and warrant further study. Like others, we found a seasonal pattern of 

enhanced stemflow from leafless canopies, especially at low rain depths; for eight of 13 

study trees in transitional leaf states, stemflow yield was significantly (p ≤ 0.10) inversely 

related to actual canopy cover. We observed, as other researchers have, very high 

variability for non-rain events, but in general, for small events, stemflow yield was 

greatest for mixed precipitation followed by rain then snow. 

Among the many reasons our findings may depart from earlier results are 

differences in climate, tree species, and event profiles, but the primary one in most cases 

is likely our focus on isolated trees in an urban park situation. We expect that our trees’ 

canopies were subject to influences undetectable (or at least complicated) in a forest 

setting. What is clear is that stemflow, in the volumes we measured, must be managed in 

an urban setting, either as a resource in the form of supplemental irrigation where 

infiltration is possible, or as a hazard if excess stemflow becomes runoff on polluted 

impervious surfaces. While interception loss by urban trees is substantial, stemflow can 

no longer be dismissed as insignificant; in fact, planting trees that divert intercepted rain 

to stemflow could reduce throughfall, which typically falls on paving. Future work 

should address stemflow quantity and quality (nutrients and pollutants) for isolated 

deciduous and coniferous trees of diverse ages and sizes in a range of climates and urban 

conditions. This body of knowledge will provide valuable guidance as we respond to the 

need for urban trees and their ecosystem services in ever-densifying cities.  
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CHAPTER 4 
CONCLUSIONS AND RECOMMENDATIONS 

4.1   SYNTHESIS: TRAIT AND METEOROLOGICAL FACTORS IN 
STEMFLOW GENERATION 

The breadth and depth of this study have allowed us to test the relevance of key 

variables identified in past studies on stemflow, SF, while identifying factors not 

previously investigated. For the precipitation regime in Kamloops, British Columbia, and 

for this sample of 20 single-leader (Group A) and 17 multi-leader (Group B) isolated 

deciduous trees, we found the following tree traits to influence SF processes and yields. 

• Branch Angles: With only one exception (Group B funneling ratio, FR, for events 

≥ 10 mm), full-canopy intersection angle, AIF, was positively correlated with SF, 

including for 1) Group A SF %, 2) Group B stemflow rate, QSF, and 3) Group A and 

B rate per m2 projected canopy area, QSF  PCA-­‐1. Also, upper-canopy intersection 

angle, AIU, was positively correlated with Group A and B funneling ratio, FR, and 

inversely correlated with SF initiation threshold rain depth, P” (thus contributing to 

a lower threshold), while upper-canopy average angle, AAU, was a positive factor 

for Group A SF %. We conclude that, except for cases where lower branching 

angles are associated with a broader canopy and smooth bark, high branch angles 

were associated with greater SF production. 

• Bark Relief: Intuitively, smoother bark should promote SF, and for multi-leader 

trees in our study, it tended to. It was also inversely related to P”, which supports 

many other observations that rougher bark requires greater rain depths to become 

saturated. However, we found that bark relief index, BRI,  was positively correlated 

with SF %, FR, QSF, and QSF  PCA-­‐1    for single-leader trees, particularly for greater 

rain depths. Our study quantified bark relief, or topography, in the form of the BRI 

rather than the storage capacity of each tree’s bark, and we suggest that greater 

surface areas associated with high BRI may promote SF production, particularly for 
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higher rain depths that have largely saturated the bark and for trees with linearly 

furrowed bark and high branch angles. We conclude that it is unwise to make 

assumptions that trees with deeply furrowed bark will produce less SF, and 

recommend that other climatic and trait factors be considered. 

• Cover Metrics: Both canopy cover, CC, and wood cover, WC, were positively 

correlated with SF % for Group A and B trees, though for the 5 to < 10 mm rain 

depth class, CC was inversely related to Group A FR. There was a positive 

correlation between CC and P” for Group A trees, reflecting that most denser trees 

require more rain depth to saturate. Finally, WC was positively associated with QSF   

for Group B trees and with QSF  PCA-­‐1 for both groups. We conclude that, while CC 

interacted unpredictably with other factors, WC was consistently positively 

correlated with SF, reflecting the importance of woody infrastructure to the 

funneling of SF through a canopy. 

• Size Metrics: For Group A trees, diameter at breast height, DBH, was directly 

related to P”, in agreement with past research. For Group B trees, DBH was 

inversely related to SF % in the smallest rain class; the same relationship was seen 

for Group A trees with FR across all rain depth classes, and with QSF  PCA-­‐1, 

confirming that smaller trees tend to produce more SF, at least early in a storm 

event. Canopy volume, VolC, was inversely correlated with SF % in Group A trees 

and positively related to QSF, suggesting that there are trade-offs whereby too great 

a volume results in higher P” and too small a volume minimizes capture area. Shape 

of a canopy can interact with its volume: in our study, we found that height-to-

width ratio, HWR, was positively correlated with SF % for Group B trees and 

inversely related to FR for Group A trees, both for the smallest rain depth class. 

Tree height, H, was directly related to QSF for Group A trees and to P” for Group B 

trees, which may reflect that taller multi-leader trees tend to be broader as well. In 

fact, canopy width, CW, was inversely related to SF %, QSF, and QSF  PCA-­‐1 for 
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Group B trees, supporting the theory that too much breadth in multi-leader trees 

tends to be counter-productive in terms of SF generation. 

• Leader and Branch Counts: The number of leaders, Ln, was consistently positively 

associated with SF (SF %, QSF, and QSF  PCA-­‐1) and inversely related to P”. We 

therefore conclude that the benefits of many multiple leaders converging at the base 

of a tree’s canopy more than compensate for the additional surface area and storage 

capacity associated with this woody infrastructure. For Group A trees, branch 

count, Bn, was positively related to FR for events ≥ 10 mm and inversely related to 

QSF and QSF  PCA-­‐1, possibly reflecting that high Bn conferred an advantage only 

once a tree was fully saturated. We suggest that this is an example of a trait that 

varies in its relationship with SF depending on other morphological and 

meteorological factors. 

The following meteorological variables were influential, and particularly so for 

groups of trees with lower or higher values for certain trait metrics. 

• Rain Depth and Duration: For all except two trees (for which rain duration, DR  ,  

was most important), this variable explained the most variability in SF volume. 

• Break Duration: In general, this factor was inversely related to SF volume, likely 

reflecting the relatively dry climate of the study region. When it occurred during the 

leafed season, DB was associated with trees having lower CC and thus being more 

exposed to the influence of other meteorological variables. During leaf transition, 

the influence of DB was associated with lower Ln and Bn, suggesting that smaller 

trees with less wood infrastructure dry out faster during intra-storm breaks. 

• Rainfall Intensity: When 5-minute weighted average rainfall intensity, Iwt5, 

influenced SF volume, it tended to be in trees with more convoluted bark and more 

discontinuously draining branches (leaf-on) or lower CC (leaf-off) and it was always 

positively related to SF. There was no clear pattern associating 5-minute maximum 
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rainfall intensity, Imax5, positively or negatively with SF, and no tree traits were 

associated with the influence of this variable. 

• Rainfall Inclination Angle: When it was a factor for leaf-on or leaf-off SF, rainfall 

inclination angle, Pinc, was always positively related to SF volume. Its influence was 

associated with small, narrow, trees with relatively high branch angles and few 

branches (leaf-on) or with trees having high WC (leaf-off), a reasonable profile of a 

tree exposed to inclined rain by virtue of its effective crown projection area. 

• Wind Speed: As found in past studies, wind speed positively influenced SF 

generation in study tree canopies in all leaf conditions. For leafed canopies,  

5-minute weighted average wind speed, Wwt5, was influential for trees with high 

canopy and wood volumes and larger leaves. Leafless trees influenced by wind 

speed tended to have wider canopies and higher WC, implying that large, broad, 

dense trees respond to windy conditions with increased SF. 

• Vapour Pressure Deficit: Commonly, VPD was inversely related to SF volumes in 

leafed canopies, and occasionally in leafless canopies. It was influential in leafed 

trees with higher full-canopy average branch angles, AAF, and in leafless canopies 

with lower DBH, WC, and tree height.  

Finally, we found the following patterns related to seasonal conditions of the 

canopy and different types of precipitation: 

• Leaf-on vs. Leaf-off Condition: As numerous other researchers have found, SF 

tended to start at lower rain depths when trees were leafless and SF volume, for 

small events at least, was generally greater for leafless canopies than those in full 

leaf. Our findings highlight the need to account for potentially increased SF 

generated by urban deciduous trees in the dormant season. 

• Precipitation Type: Though variability was high, the general pattern for individual 

trees of both Groups A and B was that, for a given depth, the most SF volume was 
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generated by mixed precipitation, then rain, then snow. Urban forest managers in 

climates subject to mixed precipitation and high rainfall depths during winter 

months are advised to assess existing and proposed urban trees and planting sites 

with these findings in mind. 

4.2  APPLICABILITY OF FINDINGS IN THE CONTEXT OF STORMWATER 
MANAGEMENT 

While our discussion has focused largely on traits correlated with high stemflow 

production, deciduous trees with opposite traits such as low branching angles in 

combination with a large diameter at breast height and deeply furrowed bark do have the 

potential to minimize stemflow while partitioning more incident rain to interception-loss 

and throughfall. If the goal is to minimize stormwater generation, higher interception-loss  

is welcome in urban settings; however, greater throughfall is beneficial only if it falls on 

pervious surfaces beneath a tree’s canopy. If trees are being planted in a largely paved 

area, trees shown to be high stemflow producers while generating minimal throughfall 

could be used to funnel stemflow to a suitably sized reservoir of growing medium at the 

base of a tree; here, nutrients and supplementary irrigation may be available to tree roots 

while biofiltration may reduce the impact of pollutants deposited on trees’ leaves and 

wood surfaces. The wide range of stemflow colour observed in this study (Figure 4.1) 

suggests that there were between-tree and between-event differences in stemflow 

chemistry, likely reflecting interaction of canopy traits and meteorological variables 

analyzed in the main part of this study. This reinforces the importance of investment in an 

adequate volume and quality of growing medium increases the potential for an urban tree 

to achieve its mature size and provide valuable ecosystem services, including rainwater 

and pollutant management, for many years. 
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Figure 4.1. Range of stemflow colours observed for May 21−23, 2013 rain event (32.7 mm).  
 

 

Using the City of Kamloops as a case study, and assuming 1) typical frequencies of 

rain depth classes (midpoint depth used), 2) mean stemflow % values based on this study 

for Group A and B trees (representing a wide range of sizes) for each rain depth class, 

and 3) mean PCA  for each group, estimated annual stemflow from 11,200 City-managed 

deciduous trees ranges from 2,575 m3 to 3,585 m3 for single- and multi-leader trees, 

respectively. The volumetric and biogeochemical concentration of these quantities at the 

base of trees justifies careful evaluation of existing and potential tree planting sites and 

proactive management of potential infiltration and/or runoff. 

It is essential to consider a tree’s contribution to urban hydrology at all stages of its 

lifecycle. The mature form of the species may play a very different role in terms of 

canopy water balance compared to a newly established specimen. Canopy traits evolve 

with time, as do their interactions with meteorological variables. Climate matters: 

different tree species will be associated with more or less stemflow production depending 

on a region’s storm regime. 
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4.3  LESSONS LEARNED  

The innovative methodologies described above are applicable in most contexts, but 

it was the public park setting that presented the greatest logistical challenges for our 

research. We offer these recommendations to prepare researchers who may be working in 

heavily used parks or streetscapes for the first time. 

• Collaborate early and often: It is critical to establish expectations and channels of 

communication with all groups that will benefit from or be impacted by research at 

an urban site. In the case of McArthur Island Park, this meant co-ordination with 

the City of Kamloops (use permits, pruning, turf maintenance, irrigation, signage, 

and our project website), the McArthur Island Lawn Bowling Club (equipment 

storage), an adjacent private property owner (secure site for our weather station), 

local police (vandalism prevention), and local media (project updates). 

• Prepare to be in the public eye: Answering countless questions from curious 

onlookers took time but paid dividends as regular users started to watch out for the 

research equipment and let us know of vandalism. Provide links to information 

about the project as well as contacts via on-site signage (Figure B.7). 

• Budget for vandalism: If there’s public use of a project site, there will be abuse as 

well, particularly just after installation. We repaired and replaced stemflow collars, 

manual rain gauges, collection reservoirs, and water-filled jugs used to weight the 

reservoirs. Local police responded to our requests for increased patrols around the 

site during the study, and we suspect that this contributed to a relatively low rate of 

vandalism. 

• Discourage urban wildlife: Species such as crows, deer, and bears had various 

impacts on our installations. One bear completely destroyed a tote and punctured 

the water-filled jugs; deer detached sections of collars with their antlers; and 

countless crows pecked holes in the black plastic used to cover each tote. We 

suspect that the behaviour of the bear and crows reflects repeated rewards of food 

88



 

	
   	
  

in black garbage bags (though clear bags weren’t immune). We recommend 

alternate configurations or materials if possible.  

• Weight or anchor everything: Prepare for above-average winds by anchoring 

collection equipment into the ground (e.g., bases for manual rain gauges) or placing 

weights within reservoirs. 

• Provide adequate reservoir capacity: During larger rain events, we had to check 

high-producing trees and take interim measurements to prevent overflow. Even 

reservoirs of more than 100 L were no match for trees like our American beech that 

produced 224 L of stemflow during a 32.7 mm rain event! 

4.4  FUTURE RESEARCH  

The knowledge base regarding stemflow quantity and quality in natural and 

managed closed-canopy forests has expanded, particularly in the past decade, but 

research is needed to better understand and predict canopy interception processes in 

urban environments and for isolated trees. While our research focused on cultivated 

deciduous species, more work is needed on stemflow and throughfall in conifer species 

commonly used in urban landscapes. Our findings highlight the need to better distinguish 

stemflow processes according to rainfall depth and other meteorological variables, 

requiring systematic study of similar species in contrasting climates and pollutant 

regimes. Findings from such studies have the potential to support proactive management 

of urban stemflow as a resource in terms of supplementary irrigation and nourishment 

rather than as a potential stormwater source. 
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APPENDIX A 
SUPPLEMENTARY TABLES 

 
Table A.1. Derived values for stemflow initiation threshold, P" (mm), rate, QSF (L mm-1), 

and rate per unit projected canopy area,QSF  PCA-1 (L mm-1 m-2), along with 
measured values for an array of canopy traits for individual single-leader 
(group A) study trees (see Glossary for definition of acronyms and units). 

 
Table A.2. Derived values for stemflow initiation threshold, P" (mm), rate, QSF (L mm-1), 

and rate per unit projected canopy area,QSF  PCA-1 (L mm-1 m-2), along with 
measured values for an array of canopy traits for individual multi-leader 
(group B) study trees (see Glossary for definition of acronyms and units). 

 
Table A.3. Regression coefficients for stemflow, SF,  volume (L) as a function of rainfall 

depth (P, mm) for study trees in leaf-on condition. 
 
Table A.4. Regression coefficients for stemflow, SF,  volume (L) as a function of rainfall 

depth (P, mm) and actual canopy cover (ACC,  %) for study trees in 
transitional leaf condition. 

 
Table A.5. Regression coefficients for stemflow, SF,  volume (L) as a function of rainfall 

depth (P, mm) for study trees in leaf-off condition. 
 
Table A.6. Multiple regression equations for stemflow, SF, volume (L) as a function of 

meteorological variables, generated for single-leader (group A, n = 20) and 
multi-leader trees (group B, n = 17) for n rain events during leaf-on condition. 

 
Table A.7. Multiple regression equations for stemflow, SF, volume (L) as a function of 

meteorological variables, generated for single-leader (group A, n = 20) and 
multi-leader trees (group B, n = 17) for rain events during transitional leaf 
condition. 

 
Table A.8. Multiple regression equations for stemflow, SF, volume (L) as a function of 

meteorological variables, generated for single-leader (group A, n = 20) and 
multi-leader trees (group B, n = 17) for rain events during leaf-off condition. 
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Tree ID P" QSF QSF  CPA-­‐1 DBH H CW HWR Volc Volw CC WC Ln Bn AIF AAF AIU AAU FD BRI MLS

A-1 1.42 0.36 0.032 10.2 5.7 3.66 1.28 28.3 1.6 76.0 15.1 1 26 45.8 62.0 58.7 72.4 0.00 1.06 12.14

A-2 2.96 0.48 0.036 10.5 4.9 4.00 1.09 52.2 1.0 90.6 10.5 1 23 45.6 37.0 51.1 45.8 0.13 1.08 92.22

A-3 1.62 0.33 0.019 11.4 6.3 5.12 1.11 85.9 1.7 94.2 11.7 1 20 40.2 38.8 50.4 54.6 0.10 1.00 30.89

A-4 3.11 0.46 0.023 12.7 7.2 4.50 1.24 103.3 3.6 83.3 18.6 1 23 37.3 33.5 34.9 42.5 0.26 1.00 17.65

A-5 2.72 1.66 0.049 14.6 7.9 6.89 1.17 206.5 5.7 84.6 12.1 1 12 57.9 59.6 69.0 65.5 0.00 1.07 9.54

A-6 1.95 0.53 0.012 15.1 9.9 6.36 1.31 320.6 6.0 74.9 12.4 1 20 42.9 34.3 39.5 40.7 0.25 1.01 1.37

A-7 2.98 1.28 0.063 15.9 9.6 5.13 1.56 120.2 5.5 91.7 19.6 1 18 60.5 61.8 68.0 70.4 0.00 1.00 33.89

A-8 3.74 0.51 0.029 17.2 8.1 4.57 1.40 90.4 6.1 97.9 24.1 1 27 47.7 38.7 55.0 61.4 0.22 1.00 33.42

A-9 3.75 1.76 0.065 19.0 10.5 5.99 1.52 244.3 13.0 95.3 24.0 1 31 46.6 47.5 54.3 61.5 0.13 1.09 9.15

A-10 3.82 1.28 0.057 19.0 11.3 5.24 1.72 167.4 6.0 95.4 20.3 1 26 52.8 60.6 55.3 13.5 0.00 1.02 22.54

A-11 4.51 1.97 0.077 19.7 10.6 5.58 1.53 172.3 8.6 94.6 17.3 1 21 43.5 58.4 30.4 65.2 0.00 1.15 15.91

A-12 4.13 0.42 0.010 20.3 10.1 7.26 1.25 311.7 12.8 88.2 21.2 1 52 14.3 23.7 20.4 39.3 0.48 1.09 30.87

A-13 4.09 2.27 0.061 21.5 9.8 7.49 1.10 271.4 16.7 92.3 23.6 1 39 47.9 32.3 53.0 44.7 0.26 1.20 56.72

A-14 3.70 1.28 0.202 23.5 14.6 2.79 4.13 51.6 8.6 99.6 39.8 1 36 68.1 77.0 75.1 83.0 0.00 1.15 21.59

A-15 2.13 1.26 0.114 24.1 13.1 3.50 2.87 81.7 8.6 98.4 32.1 1 19 66.8 75.2 66.2 76.5 0.00 1.08 23.05

A-16 3.85 0.95 0.034 31.0 10.8 5.83 1.74 280.5 18.1 95.9 33.0 1 28 38.6 18.2 45.2 27.6 0.29 1.04 27.49

A-17 2.78 1.27 0.025 34.3 9.6 8.48 0.94 290.6 41.6 90.3 41.0 1 26 35.4 25.1 32.0 30.6 0.42 1.02 12.72

A-18 3.89 1.99 0.013 43.0 14.1 13.59 0.79 1015.0 114.4 81.3 25.6 1 50 17.7 25.7 27.2 38.1 0.40 1.15 30.67

A-19 4.63 2.15 0.014 52.7 13.8 13.71 0.99 1801.2 105.6 83.6 26.0 1 42 24.9 32.0 39.1 40.3 0.29 1.23 25.57

A-20 4.12 3.61 0.022 60.7 24.7 14.21 1.04 1728.1 183.4 76.7 34.1 1 24 36.6 24.8 35.8 16.6 0.17 1.15 27.89

Avg. 3.29 1.29 0.048 23.8 10.64 6.69 1.49 371.2 28.4 89.2 23.1 1 28.2 43.6 43.3 48.0 49.5 0.17 1.08 26.76
Min. 1.42 0.33 0.010 10.2 4.95 2.79 0.79 28.3 1.0 74.9 10.5 1 12.0 14.3 18.2 20.4 13.5 0.00 1.00 1.37

Max. 4.63 3.61 0.202 60.7 24.75 14.21 4.13 1801.2 183.4 99.6 41.0 1 52.0 68.1 77.0 75.1 83.0 0.48 1.23 92.22

Table A.1. Derived values for stemflow initiation threshold, P"  (mm), rate, QSF    (L mm-1), and rate per unit projected canopy area, QSF    PCA-1   

(L mm-1 m-2), along with measured values for an array of canopy traits for individual single-leader (group A) study trees.
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Tree ID P" QSF QSF  CPA-­‐1 DBH H CW HWR Volc Volw CC WC Ln Bn AIF AAF AIU AAU FD BRI MLS

B-1 3.64 1.37 0.047 15.2 8.1 5.92 0.91 129.2 14.3 86.0 31.2 3 53 57.0 59.7 56.7 63.6 0.00 1.22 7.43

B-2 3.51 1.26 0.079 18.3 6.3 4.37 1.32 56.9 3.0 91.2 17.2 3 58 37.8 27.1 40.8 25.2 0.32 1.00 25.68

B-3 1.33 1.49 0.042 18.8 8.5 6.57 1.44 352.9 15.1 83.5 23.0 3 76 34.9 42.4 38.8 50.9 0.12 1.01 9.39

B-4 3.13 0.48 0.009 21.0 8.7 7.81 1.04 334.4 10.4 84.4 14.7 2 27 39.9 25.8 44.1 31.5 0.29 1.17 1.77

B-5 1.74 2.75 0.051 24.6 8.7 8.08 1.06 381.0 19.6 95.9 18.5 4 56 47.0 53.5 50.4 51.9 0.00 1.10 50.56

B-6 4.12 2.20 0.094 26.0 8.9 5.35 1.46 173.8 19.2 98.8 43.5 3 54 60.2 64.8 53.6 61.7 0.00 1.17 30.43

B-7 5.37 0.97 0.022 28.9 12.6 7.54 1.47 416.0 56.6 94.7 39.8 2 50 32.5 18.9 22.6 24.5 0.59 1.10 9.49

B-8 4.02 4.03 0.048 36.9 10.3 10.14 0.89 657.6 65.5 97.3 37.1 5 56 49.3 52.3 52.2 61.1 0.11 1.18 28.49

B-9 1.58 7.45 0.113 38.8 11.0 9.31 1.09 588.5 103.4 96.5 42.8 6 65 36.8 50.2 54.5 54.0 0.05 1.04 13.45

B-10 3.20 2.65 0.057 41.3 8.3 7.48 1.15 360.6 22.2 97.2 25.0 5 67 52.8 66.2 50.4 66.2 0.00 1.13 45.30

B-11 3.78 2.68 0.027 43.0 12.0 10.74 0.94 845.0 215.1 98.7 41.0 5 85 51.2 49.6 50.6 53.9 0.04 1.25 34.46

B-12 5.27 2.94 0.068 46.0 11.2 7.57 1.25 414.1 77.8 98.8 61.0 3 68 59.2 51.5 58.8 49.6 0.00 1.18 10.80

B-13 7.22 0.61 0.004 51.8 13.0 14.20 0.71 1284.2 183.1 93.8 41.1 4 74 44.6 37.4 44.9 45.0 0.13 1.42 8.90

B-14 4.97 0.32 0.003 54.3 10.5 11.21 0.99 947.5 162.8 96.2 68.4 2 49 25.0 6.5 34.1 11.9 0.55 1.43 5.55

B-15 6.83 1.34 0.017 58.0 14.2 9.51 1.31 860.9 115.6 92.2 39.0 4 66 48.7 35.0 58.6 49.2 0.29 1.33 71.58

B-16 7.23 0.72 0.003 66.8 16.8 15.10 1.02 1987.3 551.4 85.2 51.8 3 52 43.5 47.9 36.2 47.4 0.10 1.16 5.93

B-17 3.85 0.85 0.004 68.7 18.6 16.72 1.05 3872.0 418.3 80.7 47.2 4 52 41.5 13.1 34.4 -3.3 0.40 1.19 35.69

Avg. 4.17 2.01 0.041 38.7 11.05 9.27 1.12 803.6 120.8 92.4 37.8 3.6 59.3 44.8 41.3 46.0 43.8 0.18 1.18 23.23
Min. 1.33 0.32 0.003 15.2 6.29 4.37 0.71 56.9 3.0 80.7 14.7 2.0 27.0 25.0 6.5 22.6 -3.3 0.00 1.00 1.77

Max. 7.23 7.45 0.113 68.7 18.64 16.72 1.47 3872.0 551.4 98.8 68.4 6.0 85.0 60.2 66.2 58.8 66.2 0.59 1.43 71.58

Table A.2. Derived values for stemflow initiation threshold, P"  (mm), rate, QSF    (L mm-1), and rate per unit projected canopy area, QSF    PCA-1   

(L mm-1 m-2), along with measured values for an array of canopy traits for individual multi-leader (group B) study trees.
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Tree 
ID

QSF
(L mm-1)

SE p-­‐
value Intercept SE p-­‐

value R2 SEE n P"
(mm)

A-1 0.36 0.03 0.00 -0.51 0.33 0.07 0.847 1.26 27 1.4

A-2 0.48 0.04 0.00 -1.43 0.35 0.00 0.924 1.02 18 3.0

A-3 0.33 0.06 0.00 -0.54 0.63 0.20 0.605 2.18 26 1.6

A-4 0.46 0.03 0.00 -1.42 0.35 0.00 0.927 1.10 21 3.1

A-5 1.66 0.13 0.00 -4.51 -1.38 0.00 0.907 3.94 18 2.7

A-6 0.53 0.05 0.00 -1.04 0.46 0.02 0.874 1.33 22 2.0

A-7 1.28 0.11 0.00 -3.81 1.24 0.00 0.858 4.31 25 3.0

A-8 0.51 0.05 0.00 -1.89 0.55 0.00 0.876 1.66 20 3.7

A-9 1.76 0.22 0.00 -6.60 2.29 0.00 0.788 6.07 20 3.7

A-10 1.28 0.13 0.00 -4.90 1.56 0.00 0.840 4.94 21 3.8

A-11 1.97 0.15 0.00 -8.86 1.74 0.00 0.906 5.36 21 4.5

A-12 0.42 0.06 0.00 -1.73 0.58 0.00 0.721 1.66 21 4.1

A-13 2.27 0.19 0.00 -9.29 2.52 0.00 0.901 6.72 18 4.1

A-14 1.28 0.11 0.00 -4.73 1.36 0.00 0.886 4.04 20 3.7

A-15 1.26 0.11 0.00 -2.69 1.35 0.03 0.853 4.47 23 2.1

A-16 0.95 0.06 0.00 -3.64 0.71 0.00 0.931 2.18 21 3.9

A-17 1.27 0.08 0.00 -3.54 0.88 0.00 0.938 2.79 20 2.8

A-18 1.99 0.13 0.00 -7.74 1.53 0.00 0.921 4.78 23 3.9

A-19 2.15 0.32 0.00 -9.94 4.07 0.01 0.729 11.69 19 4.6

A-20 3.61 0.30 0.00 -14.84 3.01 0.00 0.908 7.90 17 4.1

B-1 1.37 0.20 0.00 -4.98 1.97 0.01 0.719 5.83 21 3.6

B-2 1.26 0.13 0.00 -4.41 1.42 0.00 0.818 4.85 24 3.5

B-3 1.49 0.07 0.00 -1.99 0.76 0.01 0.950 2.92 26 1.3

B-4 0.48 0.04 0.00 -1.52 0.43 0.00 0.913 1.08 17 3.1

B-5 2.75 0.27 0.00 -4.79 2.71 0.04 0.802 10.62 27 1.7

B-6 2.20 0.22 0.00 -9.08 2.77 0.00 0.851 8.11 19 4.1

B-7 0.97 0.10 0.00 -5.22 1.35 0.00 0.878 3.50 15 5.4

B-8 4.03 0.31 0.00 -16.23 3.01 0.00 0.907 8.64 19 4.0

B-9 7.45 0.35 0.00 -11.74 3.57 0.00 0.945 14.51 28 1.6

B-10 2.65 0.20 0.00 -8.49 2.24 0.00 0.901 7.51 22 3.2

B-11 2.68 0.13 0.00 -10.12 1.57 0.00 0.958 4.89 20 3.8

B-12 2.94 0.26 0.00 -15.51 3.51 0.00 0.900 8.98 16 5.3

B-13 0.61 0.04 0.00 -4.39 0.60 0.00 0.962 1.12 12 7.2

B-14 0.32 0.21 0.10 -1.57 3.04 0.31 0.312 4.28 7 5.0

B-15 1.34 0.24 0.00 -9.16 3.42 0.02 0.821 4.96 9 6.8

B-16 0.72 0.08 0.00 -5.20 1.14 0.00 0.944 1.58 7 7.2

B-17 0.85 0.16 0.00 -3.29 1.73 0.04 0.636 4.54 18 3.9

Table A.3. Regression coefficients for stemflow, SF,  volume (L) as a function of rainfall 
depth, P (mm) for study trees in leaf-on condition.
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Tree 
ID

QSF
(L mm-1)

SE p ACC SE p Intercept SE p R2 SEE n P"
(mm)

A-1
A-2 0.62 0.02 0.00 -0.02 0.01 0.04 0.15 0.63 0.41 0.991 0.72 12

A-3 1.50 0.07 0.00 -3.32 0.67 0.00 0.988 1.57 8 2.2

A-4 0.52 0.02 0.00 -0.02 0.01 0.01 0.02 0.35 0.48 0.980 0.51 17

A-5 1.69 0.06 0.00 -0.05 0.03 0.05 -0.27 1.54 0.43 0.979 2.31 19

A-6 0.63 0.02 0.00 -0.03 0.01 0.00 0.55 0.27 0.04 0.996 0.40 11

A-7 1.92 0.09 0.00 -2.54 0.84 0.01 0.981 2.27 10 1.3

A-8 0.57 0.03 0.00 -0.89 0.29 0.01 0.984 0.68 8 1.6

A-9 2

A-10 1.15 0.06 0.00 -1.79 0.51 0.00 0.969 1.50 13 1.6

A-11 1.63 0.07 0.00 -3.45 0.83 0.01 0.992 1.59 6 2.1

A-12 0.54 0.03 0.00 -1.19 0.37 0.01 0.975 1.02 11 2.2

A-13 2.05 0.05 0.00 -5.57 0.48 0.00 0.995 1.17 10 2.7

A-14 1.83 0.04 0.00 -4.23 0.41 0.00 0.998 0.88 7 2.3

A-15 1.68 0.13 0.00 0.17 0.07 0.04 -14.54 5.46 0.02 0.973 2.87 8

A-16 1.32 0.06 0.00 -2.26 0.54 0.00 0.977 1.57 12 1.7

A-17 1.85 0.10 0.00 -0.12 0.06 0.02 5.26 4.12 0.11 0.962 2.58 17

A-18 2.27 0.03 0.00 -0.05 0.02 0.01 -2.08 1.18 0.06 0.999 0.76 10

A-19 2.67 0.10 0.00 -5.54 0.83 0.00 0.988 2.31 11 2.1

A-20 5.04 0.19 0.00 -0.37 0.20 0.05 10.21 12.43 0.22 0.991 6.07 10

B-1 1.67 0.20 0.00 -4.31 2.33 0.04 0.856 7.18 14 2.6

B-2 0.60 0.02 0.00 -0.58 0.20 0.01 0.993 0.47 8 1.0

B-3 1.51 0.16 0.00 -0.03 0.02 0.07 0.23 0.91 0.40 0.913 1.21 13

B-4 0.42 0.13 0.00 0.30 1.56 0.43 0.497 4.54 13 0.7

B-5 3.10 0.10 0.00 -4.92 0.92 0.00 0.993 2.29 9 1.6

B-6 2.31 0.12 0.00 -6.19 1.08 0.00 0.980 2.67 10 2.7

B-7 0.21 0.00 0.01 -0.01 0.00 0.03 0.18 0.05 0.09 1.000 0.02 4

B-8 6.05 0.29 0.00 -18.48 2.94 0.00 0.987 6.45 8 3.1

B-9 5.64 0.18 0.00 -2.25 1.82 0.13 0.992 2.03 8 0.4

B-10 2.33 0.09 0.00 -4.91 0.90 0.00 0.992 2.16 8 2.1

B-11 3.88 0.07 0.00 -11.36 0.91 0.00 0.999 1.55 5 2.9

B-12 4.03 0.07 0.00 -0.20 0.05 0.00 5.04 4.69 0.16 0.998 1.40 9

B-13 2

B-14 3

B-15 2.22 0.26 0.00 -7.86 4.96 0.11 0.961 7.44 5 3.5

B-16 3

B-17 1.62 0.51 0.04 -6.80 11.02 0.30 0.832 13.71 4 4.2

Note: Shaded cells indicate that there was not sufficient data for analysis.

Table A.4. Regression coefficients for stemflow,  SF,  volume (L) as a function of rainfall depth, P  
(mm) and actual canopy cover, ACC  (%) for study trees in transitional leaf condition.
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Tree 
ID

QSF
(L mm-1)

SE p Intercept SE p R2 SEE n P"
(mm)

A-1 0.40 0.01 0.00 -0.21 0.08 0.01 0.977 0.35 22 0.5

A-2 0.54 0.05 0.00 -0.54 0.10 0.00 0.909 0.26 16 1.0

A-3 0.32 0.03 0.00 -0.23 0.07 0.00 0.871 0.19 16 0.7

A-4 0.19 0.07 0.40 0.13 0.11 0.13 0.009 0.13 9 0.7

A-5 1.28 0.16 0.00 -0.50 0.37 0.08 0.863 0.87 12 0.4

A-6 0.81 0.02 0.00 -0.54 0.14 0.00 0.986 0.56 21 0.7

A-7 0.79 0.16 0.00 0.05 0.33 0.44 0.618 0.94 17 0.1

A-8 0.37 0.06 0.00 -0.25 0.13 0.03 0.773 0.31 15 0.7

A-9 1.54 0.05 0.00 -2.14 0.29 0.00 0.977 1.26 25 1.4

A-10 0.09 0.35 0.40 0.50 0.49 0.16 0.01 0.64 13 5.7

A-11 0.59 0.08 0.00 -0.63 0.17 0.00 0.815 0.44 15 1.1

A-12 0.32 0.09 0.01 -0.01 0.26 0.49 0.776 0.42 6 0.0

A-13 1

A-14 0.33 0.17 0.05 0.21 0.42 0.32 0.317 0.91 10 0.6

A-15 0.71 0.57 0.12 0.20 0.82 0.40 0.11 1.46 15 0.3

A-16 -0.02 0.20 0.47 0.25 0.29 0.21 0.00 0.36 9 14.7

A-17 0.13 0.17 0.23 0.00 0.24 0.50 0.08 0.29 9 0.0

A-18 1.11 0.09 0.00 -1.16 0.22 0.00 0.958 0.47 9 1.0

A-19 1.21 0.17 0.00 -0.97 0.39 0.02 0.840 0.91 12 0.8

A-20 1.78 0.22 0.00 -1.56 0.56 0.01 0.902 1.18 9 0.9

B-1 -0.01 0.03 0.35 0.05 0.05 0.15 0.02 0.06 12 3.7

B-2 0.51 0.08 0.00 -0.30 0.18 0.06 0.777 0.44 14 0.6

B-3 2.11 0.05 0.00 -2.18 0.35 0.00 0.994 1.14 14 1.0

B-4 0.37 0.04 0.00 -0.42 0.09 0.00 0.861 0.23 15 1.1

B-5 2.22 0.21 0.00 -2.05 0.47 0.00 0.902 1.16 14 0.9

B-6 0.65 0.14 0.00 -0.37 0.32 0.13 0.63 0.80 14 0.6

B-7 0.93 0.06 0.00 -3.36 0.70 0.00 0.977 1.41 7 3.6

B-8 5

B-9 5.14 0.41 0.00 -2.66 0.84 0.00 0.913 2.40 17 0.5

B-10 0.16 0.73 0.41 0.93 1.03 0.19 0.00 1.35 12 5.7

B-11 1.38 0.19 0.00 -1.70 0.46 0.00 0.860 0.95 11 1.2

B-12 1.15 0.17 0.00 -1.87 0.54 0.01 0.92 0.76 6 1.6

B-13 1.00 0.09 0.00 -4.51 1.31 0.04 0.98 1.82 4 4.5

B-14 0

B-15 0.13 0.02 0.00 -0.14 0.04 0.00 0.88 0.08 12 1.1

B-16 1

B-17 0.10 0.02 0.00 -0.08 0.06 0.10 0.724 0.12 9 0.9

Note: Shaded cells indicate that there was not sufficient data for analysis.

Table A.5. Regression coefficients for stemflow,  SF,  volume  (L)  as  a  function  of  rainfall  
depth,  P  (mm) for study trees in leaf-off condition.
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Table A.6. Multiple regression equations for stemflow, !", volume (L) as a function of 
meteorological variables, generated for single-leader (group A, n = 20) and multi-leader 
trees (group B, n = 17) for rain events during leaf-on condition. 
!

!
Note: B-14, B-15, and B-16 were not analyzed due to an insufficient number of events# 
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Table A.7. Multiple regression equations for stemflow, !", volume (L) as a function of 
meteorological variables, generated for single-leader (group A, n = 20) and multi-leader 
trees (group B, n = 17) for rain events during transitional leaf condition. 
!

!
Note: A-1, 3, 7, 8, 9, 11, 13, 14, 15, 18, and 20 as well as B-2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 were not 
analyzed due to an insufficient number of events# 
!
!
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Table A.8. Multiple regression equations for stemflow, !", volume (L) as a function of 
meteorological variables, generated for single-leader (group A, n = 20) and multi-leader 
trees (group B, n = 17) for rain events during leaf-off condition. 
!

!
Note: A-12, 13, 17, and 18 as well as B-7, 8, 12, 13, 14, 16 and 17 were not analyzed due to an insufficient number of events# 
!
!
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APPENDIX B 
SUPPLEMENTARY MAPS, PHOTOGRAPHS, AND VIDEOS 

 
 
Figure B.1. Map showing location of study trees, the meteorological station, and manual 

rain gauges within McArthur Island Park on the north shore of the Thompson 
River. The inset shows Kamloops in the context of British Columbia and the 
Pacific Northwest. 

 
Figure B.2. Aerial view of McArthur Island Park taken from the northwest. 
 
Figure B.3. Meteorological station complete with tipping bucket rain gauge (middle)  

and separate manual rain gauge (left). 
 
Figure B.4. Stemflow collection system. 
 
Figure B.5. Screen capture of a portion of leafless canopy. Deduction of selected sky 

pixels from total pixels in Adobe Photoshop® CC yielded canopy cover (%) 
and wood cover (%). 

 
Figure B.6. Bark with measured bark relief index, BRI, values (from left to right) of  

1.00, 1.20, and 1.43. 
 
Figure B.7. Project sign produced by the City of Kamloops and attached to large maps at 

key access points around the park. 
 
VIDEO DOCUMENTATION OF STEMFLOW 
 
Video B.1. Pin oak  
 
Video B.2. Silver maple  
 
Video B.3. American beech  
 
Video B.4. American beech (close-up)  
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Figure B.1. Location of study trees, meteorological station, and manual rain gauges within McArthur Island Park. 
The inset shows Kamloops in the context of British Columbia and the Pacific Northwest. 
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Figure B.2. Aerial view of McArthur Island Park taken from the northwest. 
 
 

 
Figure B.3. Meteorological station complete with tipping bucket rain gauge (middle)  
and separate manual rain gauge (left). 
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Figure B.4. Stemflow collection system. 
 

 
 

Figure B.5. Screen capture of a portion of leafless canopy. Deduction of  
selected sky pixels from total pixels in Adobe Photoshop® CC yielded  
canopy cover (%) and wood cover (%). 
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Figure B.6. Bark with measured bark relief index, +,-'&values (from left to right) of  
1.00, 1.20, and 1.43. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.7. Project sign produced by the 
City of Kamloops and attached to large 
maps at key access points around the 
park. 

 

Video Documentation of Stemflow 
 
Footage taken during this study can be viewed at the following links: 
 
Video B.1. Pin oak: https://www.youtube.com/watch?v=8BBRvQ8xYfI 
Video B.2. Silver maple: https://www.youtube.com/watch?v=wu7TxrjCDCI 
Video B.3. American beech: https://www.youtube.com/watch?v=DqXwgD8u8Pg 
Video B.4. American beech (close-up): https://www.youtube.com/watch?v=irFt1tRTvzI  

A-13 A-7 B-14 A-13 
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